首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
XPF/Rad1/Mus81/Hef proteins recognize and cleave branched DNA structures. XPF and Rad1 proteins cleave the 5' side of nucleotide excision repair bubble, while Mus81 and Hef cleave similar sites of the nicked Holliday junction, fork, or flap structure. These proteins all function as dimers and consist of catalytic and helix-hairpin-helix DNA binding (HhH) domains. We have determined the crystal structure of the HhH domain of Pyrococcus furiosus Hef nuclease (HefHhH), which revealed the distinct mode of protein dimerization. Our structural and biochemical analyses also showed that each of the catalytic and HhH domains binds to distinct regions within the fork-structured DNA: each HhH domain from two separate subunits asymmetrically binds to the arm region, while the catalytic domain binds near the junction center. Upon binding to DNA, Hef nuclease disrupts base pairs near the cleavage site. It is most likely that this bipartite binding mode is conserved in the XPF/Rad1/Mus81 nuclease family.  相似文献   

3.
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.  相似文献   

4.
The Escherichia coli SeqA protein recognizes the 11 hemimethylated G-mA-T-C sites in the oriC region of the chromosome, and prevents replication over-initiation within one cell cycle. The crystal structure of the SeqA C-terminal domain with hemimethylated DNA revealed the N6-methyladenine recognition mechanism; however, the mechanism of discrimination between the hemimethylated and fully methylated states has remained elusive. In the present study, we performed mutational analyses of hemimethylated G-mA-T-C sequences with the minimal DNA-binding domain of SeqA (SeqA71–181), and found that SeqA71–181 specifically binds to hemimethylated DNA containing a sequence with a mismatched mA:G base pair [G-mA(:G)-T-C] as efficiently as the normal hemimethylated G-mA(:T)-T-C sequence. We determined the crystal structures of SeqA71–181 complexed with the mismatched and normal hemimethylated DNAs at 2.5 and 3.0 Å resolutions, respectively, and found that the mismatched mA:G base pair and the normal mA:T base pair are recognized by SeqA in a similar manner. Furthermore, in both crystal structures, an electron density is present near the unmethylated adenine, which is only methylated in the fully methylated state. This electron density, which may be due to a water molecule or a metal ion, can exist in the hemimethylated state, but not in the fully methylated state, because of steric clash with the additional methyl group.  相似文献   

5.
Fatty acid binding proteins (FABPs) are capable of binding hydrophobic ligands with high affinity; thereby facilitating the cellular uptake and intracellular trafficking of fatty acids. In this study, functional characteristics of a cytoplasmic FABP from the giant liver fluke Fasciola gigantica (FgFABP) were determined. Binding of a fluorescent fatty acid analogue 11-[[5-dimethy aminonaphtalene-1-sulphonyl] amino] undecanoic acid (DAUDA) to FgFABP resulted in changes in the emission spectrum. The optimal excitation wavelength and maximum emission of fluorescence for binding activities with DAUDA were 350 nm and 550 nm, respectively. The binding activity for DAUDA was determined from titration experiments and revealed a Kd value of 2.95 ± 0.54 μM. Furthermore, we found that cross-linking profile of FgFABP with dithiobis-(succinimidylpropionate) (DSP) in the presence of DAUDA resulted in increased formation of higher-ordered oligomers compared to that in the absence of DAUDA. We also replaced five highly conserved positively charged residues (K9, K58, K91, R107 and K131) with alanine and studied their oligomerization and binding properties of the modified FgFABPs. The obtained data demonstrate that these residues do not appear to be involved in oligomerization. However, the K58A and R107A substitutions exhibited a reduction in binding affinities. K91A and R107A revealed an increase in maximal specific binding.  相似文献   

6.
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.  相似文献   

7.
Fay A  Yutzy WH  Roden RB  Moroianu J 《Journal of virology》2004,78(24):13447-13454
During the papillomavirus (PV) life cycle, the L2 minor capsid protein enters the nucleus twice: in the initial phase after entry of virions into cells and in the productive phase to mediate encapsidation of the newly replicated viral genome. Therefore, we investigated the interactions of the L2 protein of bovine PV type 1 (BPV1) with the nuclear import machinery and the viral DNA. We found that BPV1 L2 bound to the karyopherin alpha2 (Kap alpha2) adapter and formed a complex with Kap alpha2beta1 heterodimers. Previous data have shown that the positively charged termini of BPV1 L2 are required for BPV1 infection after the binding of the virions to the cell surface. We determined that these BPV1 L2 termini function as nuclear localization signals (NLSs). Both the N-terminal NLS (nNLS) and the C-terminal NLS (cNLS) interacted with Kap alpha2, formed a complex with Kap alpha2beta1 heterodimers, and mediated nuclear import via a Kap alpha2beta1 pathway. Interestingly, the cNLS was also the major DNA binding site of BPV1 L2. Consistent with the promiscuous DNA encapsidation by BPV1 pseudovirions, this DNA binding occurred without nucleotide sequence specificity. Moreover, an L2 mutant encoding a scrambled version of the cNLS, which supports production of virions, rescued the DNA binding but not the Kap alpha2 interaction. These data support a model in which BPV1 L2 functions as an adapter between the viral DNA via the cNLS and the Kaps via the nNLS and facilitates nuclear import of the DNA during infection.  相似文献   

8.
Relaxin-3 is a newly identified insulin/relaxin superfamily peptide that plays a putative role in the regulation of food intake and stress response by activating its cognate G-protein-coupled receptor RXFP3. Relaxin-3 has three highly conserved arginine residues, B12Arg, B16Arg and B26Arg. We speculated that these positively charged arginines may interact with certain negatively charged residues of RXFP3. To test this hypothesis, we first replaced the negatively charged residues in the extracellular domain of RXFP3 with arginine, respectively. Receptor activation assays showed that arginine replacement of Glu141 or Asp145, especially Glu141, significantly decreased the sensitivity of RXFP3 to wild-type relaxin-3. In contrast, arginine replacement of other negatively charged extracellular residues had little effect. Thus, we deduced that Glu141 and Asp145, locating at the extracellular end of the second transmembrane domain, played a critical role in the interaction of RXFP3 with relaxin-3. To identify the ligand residues interacting with the negatively charged EXXXD motif of RXFP3, we replaced the three conserved arginines of relaxin-3 with negatively charged glutamate or aspartate, respectively. The mutant relaxin-3s retained the native structure, but their binding and activation potencies towards wild-type RXFP3 were decreased significantly. The compensatory effects of the mutant relaxin-3s towards mutant RXFP3s suggested two probable interaction pairs during ligand–receptor interaction: Glu141 of RXFP3 interacted with B26Arg of relaxin-3, meanwhile Asp145 of RXFP3 interacted with both B12Arg and B16Arg of relaxin-3. Based on these results, we proposed a relaxin-3/RXFP3 interaction model that shed new light on the interaction mechanism of the relaxin family peptides with their receptors.  相似文献   

9.
10.
G D Parks  R A Lamb 《Cell》1991,64(4):777-787
We have tested the role of different charged residues flanking the sides of the signal/anchor (S/A) domain of a eukaryotic type II (N(cyt)C(exo)) integral membrane protein in determining its topology. The removal of positively charged residues on the N-terminal side of the S/A yields proteins with an inverted topology, while the addition of positively charged residues to only the C-terminal side has very little effect on orientation. Expression of chimeric proteins composed of domains from a type II protein (HN) and the oppositely oriented membrane protein M2 indicates that the HN N-terminal domain is sufficient to confer a type II topology and that the M2 N-terminal ectodomain can direct a type II topology when modified by adding positively charged residues. These data suggest that eukaryotic membrane protein topology is governed by the presence or absence of an N-terminal signal for retention in the cytoplasm that is composed in part of positive charges.  相似文献   

11.
Plant homeodomain-leucine zipper proteins, unlike most animal homeodomains, bind DNA efficiently only as dimers. In the present work, we report that the deletion of the homeodomain N-terminal arm (first nine residues) of the homeodomain-leucine zipper protein Hahb-4 dramatically affects its DNA-binding affinity, causing a 70-fold increase in dissociation constant. The addition of the N-terminal arm of Drosophila Antennapedia to the truncated form restores the DNA-binding affinity of dimers to values similar to those of the native form. However, the Antennapedia N-terminal arm is not able to confer increased binding affinity to monomers of Hahb-4 lacking the leucine zipper motif, indicating that the inefficient binding of monomers must be due to structural differences in other parts of the molecule. The construction of proteins with modifications at residues 5 to 7 of the homeodomain suggests strongly that positively charged amino acids at these positions play essential roles in determining the DNA-binding affinity. However, the effect of mutations at positions 6 and 7 can be counteracted by introducing a stretch of positively charged residues at positions 1 to 3 of the homeodomain. Sequence comparisons indicate that all homeodomain-leucine zipper proteins might use contacts of the N-terminal arm with DNA for efficient binding. The occurrence of a homeodomain with a DNA-interacting N-terminal arm must then be an ancient acquisition in evolution, earlier than the separation of lines leading to metazoa, fungi and plants.  相似文献   

12.
Based on the similarity between the TIGR (trabecular-meshwork inducible glucocorticoid response) (also known as myocilin) and olfactomedin protein families identified throughout the length of the TIGR protein, we have identified more distantly related proteins to determine the elements essential to the function/structure of the TIGR and olfactomedin proteins. Using a sequence walk method and the Shotgun program, we have identified a family including 31 olfactomedin domain-containing sequences. Multiple sequence alignments and secondary structure analyses were used to identify conserved sequence elements. Pairwise identity in the olfactomedin domain ranges from 8 to 64%, with an average pairwise identity of 24%. The N-terminal regions of the proteins fall into two subgroups, one including the TIGR and olfactomedin families and another group of apparently unrelated domains. The TIGR and olfactomedin sequences display conserved motifs including a residual leucine zipper region and maintain a similar secondary structure throughout the N-terminal region. The correlation between conserved elements and disease-associated mutations and apparent polymorphisms in human TIGR was also examined to evaluate the apparent importance of conserved residues to the function/structure of TIGR. Several residues have been identified as essential to the function and/or structure of the human TIGR protein based on their degree of conservation across the family and their implication in the pathogenesis of primary open-angle glaucoma. Additionally, we have identified a group of chitinase sequences containing several of the highly conserved motifs present in the C-terminal region of the olfactomedin domain-containing sequences.  相似文献   

13.
Sso7d from the extreme thermophilic crenarchaeon Sulfolobus solfataricus is a multifunctional protein in in vitro assays, whose in vivo role is still puzzling. Crystals of Sso7d in complex with DNA elucidated the protein surface involved in the binding to the nucleic acid, whereas the locations of the Sso7d regions responsible for a chaperone activity in renaturing protein aggregates (i.e., the protein-binding surface and the site of ATPase activity) are still unknown. We identified the regions of Sso7d involved in protein-binding by limited proteolysis experiments associated to advanced mass spectrometric procedures performed on isolated Sso7d and Sso7d in complex with the peptide melittin. By affinity labeling of Sso7d with the ATP analogue 5'-p-fluorosulfonylbenzoyl adenosine and characterization of the labeled tryptic peptides by tandem mass spectrometry, we found that Y7 and K39 are residues involved in ATP binding/hydrolysis. Insights into the positions of the ligands melittin and ATP were achieved by a molecular modeling study; the models obtained were in agreement with most experimental data. A comparison among the complexes of Sso7d with DNA, with melittin, and with ATP showed that the DNA-binding surface and the protein-binding surface overlap, whereas the ATPase site is mostly independent of the binding sites for the nucleic acid and melittin.  相似文献   

14.
Alignment of the protein sequence of DNA-dependent DNA polymerases has allowed the definition of a new motif, lying adjacent to motif B in the direction of the N-terminus and therefore named pre-motif B. Both motifs are located in the fingers subdomain, shown to rotate towards the active site to form a dNTP-binding pocket in several DNA polymerases in which a closed ternary complex pol:DNA:dNTP has been solved. The functional significance of pre-motif B has been studied by site-directed mutagenesis of 29 DNA polymerase. The affinity for nucleotides of 29 DNA polymerase mutant residues Ile364 and Lys371 was strongly affected in DNA- and terminal protein-primed reactions. Additionally, mutations in Ile364 affected the DNA-binding capacity of 29 DNA polymerase. The results suggest that Lys371 of 29 DNA polymerase, highly conserved among families A and B, interacts with the phosphate groups of the incoming nucleotide. On the other hand, the role of residue Ile364 seems to be structural, being important for both DNA and dNTP binding. Pre-motif B must therefore play an important role in binding the incoming nucleotide. Interestingly, the roles of Lys371 and Ile364 were also shown to be important in reactions without template, suggesting that 29 DNA polymerase can achieve the closed conformation in the absence of a DNA template.  相似文献   

15.
The C1 domain zinc finger structure is highly conserved among the protein kinase C (PKC) superfamily members. As the interaction site for the second messenger sn-1,2-diacylglycerol (DAG) and for the phorbol esters, the C1 domain has been an important target for developing selective ligands for different PKC isoforms. However, the C1 domains of the atypical PKC members are DAG/phorbol ester-insensitive. Compared with the DAG/phorbol ester-sensitive C1 domains, the rim of the binding cleft of the atypical PKC C1 domains possesses four additional positively charged arginine residues (at positions 7, 10, 11, and 20). In this study, we showed that mutation to arginines of the four corresponding sites in the C1b domain of PKCdelta abolished its high potency for phorbol 12,13-dibutyrate in vitro, with only marginal remaining activity for phorbol 12-myristate 13-acetate in vivo. We also demonstrated both in vitro and in vivo that the loss of potency to ligands was cumulative with the introduction of the arginine residues along the rim of the binding cavity rather than the consequence of loss of a single, specific residue. Computer modeling reveals that these arginine residues reduce access of ligands to the binding cleft and change the electrostatic profile of the C1 domain surface, whereas the basic structure of the binding cleft is still maintained. Finally, mutation of the four arginine residues of the atypical PKC C1 domains to the corresponding residues in the deltaC1b domain conferred response to phorbol ester. We speculate that the arginine residues of the C1 domain of atypical PKCs may provide an opportunity for the design of ligands selective for the atypical PKCs.  相似文献   

16.
The reversible thermal unfolding of the archaeal histone-like protein Ssh10b from the extremophile Sulfolobus shibatae was studied using differential scanning calorimetry and circular dichroism spectroscopy. Analytical ultracentrifugation and gel filtration showed that Ssh10b is a stable dimer in the pH range 2.5–7.0. Thermal denaturation data fit into a two-state unfolding model, suggesting that the Ssh10 dimer unfolds as a single cooperative unit with a maximal melting temperature of 99.9 °C and an enthalpy change of 134 kcal/mol at pH 7.0. The heat capacity change upon unfolding determined from linear fits of the temperature dependence of ΔHcal is 2.55 kcal/(mol K). The low specific heat capacity change of 13 cal/(mol K residue) leads to a considerable flattening of the protein stability curve (ΔG (T)) and results in a maximal ΔG of only 9.5 kcal/mol at 320 K and a ΔG of only 6.0 kcal/mol at the optimal growth temperature of Sulfolobus.  相似文献   

17.
Analysis of 64 lambda phage proteins revealed the presence of four strong variants of the conserved DNA binding fold of repressors. Three of them have been known from previous studies but the Nu 1 gene product is a new member of the family of proteins that may bind strongly to DNA in the repressor-like fashion. It is peculiar that the motif occurs in the very N terminus of Nu 1 just between two possible starts of its gene.  相似文献   

18.
19.
Hara N  Namba K  Minamino T 《PloS one》2011,6(7):e22417
For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate.  相似文献   

20.
Cell surface negativity and the binding of positively charged particles   总被引:3,自引:0,他引:3  
The binding of positively charged, colloidal ferric oxide particles to the surfaces of Ehrlich ascites tumour cells, before and after incubation with neuraminidase and/or ribonuclease, has been studied by electron microscopy. An attempt has been made to correlate the amount of binding observed, with the electrophoretic mobilities of the cells under similar conditions to those under which they were exposed to the ferric oxide. Although a progressive loss of staining was observed with progressive loss of cellular net surface negativity, neither property was predictable from knowledge of the other. Some of the difficulties inherent in quantitative staining techniques of this type are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号