首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.The vertebrate p53 family of proteins consists of three members, p53, p63, and p73. p53 has received considerable attention because of the fact that it is mutated in approximately 50% of all human cancers and plays an important role in protecting cells against DNA damage and cellular stressors. p63 and p73 on the other hand, seem to be less involved in tumorigenesis but play important roles in epithelial development and neurogenesis, respectively. p53 related sequences also exist in invertebrate species. We review the functional data on invertebrate p53 superfamily proteins, largely focusing on the model organisms, Caenorhabditis elegans and Drosophila melanogaster. Invertebrate p53 superfamily members act in apoptosis regulation in response to genotoxic agents and the deletion of invertebrate p53 superfamily proteins does not lead to overall developmental defects. Nevertheless, there is emerging evidence that invertebrate p53-like proteins also have functions unrelated to apoptosis.There has been a debate whether invertebrate p53 superfamily proteins are phylogenetically more related to vertebrate p53 or p63. Taking advantage of recent genome sequencing projects, we analyze the phylogenetic relationships of the p53 superfamily from vertebrates and invertebrates. Consistent with previous reports, our phylogenetic analysis supports the conclusion that a p63-like domain structure is evolutionarily more ancient. It thus appears that a protein with a p63-like domain structure originally evolved, possibly to mediate apoptosis of damaged cells. In vertebrates, this earlier role of p53-like proteins is largely performed by p53. However, it appears that p63 has maintained the evolutionary ancient role of apoptosis in the female germline (Suh et al. 2006)  相似文献   

2.
3.
The p53 tumor suppressor regulates expression of genes involved in various stress responses. Upon genotoxic stress, p53 induces target genes regulating cell cycle arrest for survival or apoptosis. Nevertheless, detailed mechanisms of how p53 selectively regulates these opposing outcomes remain unclear. For this study, we investigated p53 regulatory mechanisms exerted by nucleosome assembly protein 1-like 1 (NAP1L1) and NAP1L4, both of which are identified as DGKζ-interacting proteins. Here we demonstrate that, under normal conditions, NAP1L1 knockdown decreases Lys320 acetylation of p53 with attenuated proarrest p21 expression, whereas NAP1L4 knockdown increases Lys320 acetylation with enhanced p21 expression. These conditions lead respectively to facilitation and suppression of cell growth. Under genotoxic stress conditions, NAP1L1 knockdown increases Lys382 acetylation with enhanced proapoptotic Bax levels, thereby facilitating cell death. By contrast, NAP1L4 knockdown decreases Lys382 acetylation with attenuated Bax levels, thereby suppressing apoptosis. These results suggest that NAP1L1 and NAP1L4 regulate cell fate by controlling the expression of p53-responsive proarrest and proapoptotic genes through selective modulation of p53 acetylation at specific sites during normal homeostasis and in stress-induced responses.  相似文献   

4.
E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.  相似文献   

5.
6.
The p53 tumor suppressor is activated in the cellular response to genotoxic stress. Transactivation of p53 target genes dictates cell cycle arrest and DNA repair or induction of apoptosis; however, a molecular mechanism responsible for these distinct functions remains unclear. Recent studies revealed that phosphorylation of p53 on Ser(46) was associated with induction of p53AIP1 expression, resulting in the commitment of the cell fate into apoptotic cell death. Moreover, upon exposure to genotoxic stress, p53DINP1 was expressed and recruited a kinase(s) to p53 that specifically phosphorylated Ser(46). Here, we show that the pro-apoptotic kinase, protein kinase C delta (PKCdelta), is involved in phosphorylation of p53 on Ser(46). PKCdelta-mediated phosphorylation is required for the interaction of PKCdelta with p53. The results also demonstrate that p53DINP1 associates with PKCdelta upon exposure to genotoxic agents. Consistent with these results, PKCdelta potentiates p53-dependent apoptosis by Ser(46) phosphorylation in response to genotoxic stress. These findings indicate that PKCdelta regulates p53 to induce apoptotic cell death in the cellular response to DNA damage.  相似文献   

7.
Itch is a member of the HECT family of ubiquitin E3 ligases, and regulates the stability of several proteins involved in response to genotoxic stress. We have previously shown that p73 and p63, two members of the p53 family of tumour suppressors, are targets for Itch-mediated ubiquitylation and degradation. Here, we show that depletion of Itch by RNA interference augments apoptosis upon treatment with chemotherapeutic drugs. We also show that cells with no functional p53 are more sensitive to Itch depletion, highlighting the importance that changes in levels of Itch may play in majority of cancers, where p53 is absent or mutated. Furthermore, reintroduction of Itch in fibroblasts obtained from Itch deficient mice results in reduced cell death upon DNA damage. Overall our findings suggest that inhibition of Itch potentiates the effect of chemotherapeutic drugs revealing the pharmacological potentials of targeting Itch for cancer therapy.  相似文献   

8.
The molecular subversion of cell death is acknowledged as a principal contributor to the development and progression of cancer. The p53 tumor suppressor protein is among the most commonly altered proteins in human cancer. The p53 protein mediates critical functions within cells including the response to genotoxic stress, differentiation, senescence, and cell death. Loss of p53 function can result in enhanced rates of cell proliferation, resistance to cell death stimuli, genomic instability, and metastasis. The community of cancer scientists is now in possession of a vast repository of information regarding the frequency, specific mechanisms, and clinical context of cell death deregulation in cancer. This information has enabled the design of therapeutic agents to target proteins, including p53. The feasibility and impact of targeting cell death signaling proteins has been established in preclinical models of human cancer. The appropriate application of these targeted agents is now being established in clinical trials.  相似文献   

9.
Structure, function and regulation of p63 and p73   总被引:12,自引:0,他引:12  
  相似文献   

10.
p53, p63, and p73 belong to the p53 family of proteins, which mediate development, differentiation, and various other cellular responses. p53 is involved in many anti-cancer mechanisms, such as cell cycle regulation, apoptosis, and the maintenance of genomic integrity. The p63 gene is controlled by two promoters that direct the expression of two isoforms, one with and one without transactivating properties, known as TAp63 and ΔNp63. In this study, p53-deficient cells (Hep3B and PC-3) and p53-expressing cells (A549 and HepG2) were treated with doxorubicin to examine the possible roles of TAp63 in these cells under genotoxic stress; TAp63 expression was induced in p53-deficient cell lines, but not in p53-expressing cell lines. The ectopic expression of p53 in p53-deficient cells (Hep3B) reduced TAp63 promoter activity, and knockdown of TAp63 attenuated doxorubicin-induced cell growth arrest by promoting cell cycle progression, leading to an increase in the percentage of G(2)/M cells. Moreover, knockdown of TAp63 increased cell sensitivity to doxorubicin-induced genomic damage. Our results suggest that TAp63 may play a compensatory role in cell cycle regulation and DNA damage repair in p53-deficient cancer cells.  相似文献   

11.
12.
In response to DNA damage, the cellular decision of life versus death involves an intricate network of multiple factors that play critical roles in regulation of DNA repair, cell cycle, and cell death. DNA damage checkpoint proteins are crucial for maintaining DNA integrity and normal cellular functions, but they may also reduce the effectiveness of cancer treatment. Here we report the involvement of Cdk5 activator p35-binding protein C53 in regulation of apoptosis induced by genotoxic stress through modulating Cdk1-cyclin B1 function. C53 was originally identified as a Cdk5 activator p35-binding protein and a caspase substrate. Importantly, our results demonstrated that C53 deficiency conferred partial resistance to genotoxic agents such as etoposide and x-ray irradiation, whereas ectopic expression of C53 rendered cells susceptible to multiple genotoxins that usually trigger G(2)/M arrest. Furthermore, we found that Cdk1 activity was required for etoposide-induced apoptosis of HeLa cells. Overexpression of C53 promoted Cdk1 activity and nuclear accumulation of cyclin B1, whereas C53 deficiency led to more cytoplasmic retention of cyclin B1, suggesting that C53 acts as a pivotal player in modulating the G(2)/M DNA damage checkpoint. Finally, C53 and cyclin B1 co-localize and associate in vivo, indicating a direct role of C53 in regulating the Cdk1-cyclin B1 complex. Taken together, our results strongly indicate that in response to genotoxic stress, C53 serves as an important regulatory component of the G(2)/M DNA damage checkpoint. By overriding the G(2)/M checkpoint-mediated inhibition of Cdk1-cyclin B1 function, ectopic expression of C53 may represent a novel approach for chemo- and radio-sensitization of cancer cells.  相似文献   

13.
We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.  相似文献   

14.
After exposure to damaging agents, the p53 tumor suppressor is stabilized mediating cell cycle arrest and apoptosis. p53 family member, ΔNp63α promotes cell proliferation and accelerates tumor growth. We previously found that the genotoxic stress agents induced a decrease of ΔNp63α . We further observed that genotoxic stress mediated phosphorylation of ΔNp63α targeting it into proteasome degradation. Here, we found that high ΔNp63 protein levels in primary tumors accurately predicted response to platinum based chemotherapy and a favorable outcome in head and neck cancer patients. Our data suggest that degradation of ΔNp63α is part of the cellular response to DNA damage in head and neck cancers. The findings may have implications for the rational use of DNA damaging agents in human cancer.  相似文献   

15.
16.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be down regulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NF-κΒ in presence of cisplatin. We find that NF-κΒ promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NF-κΒ leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NF-κΒ with siRNA-mediated silencing NF-κΒ expression attenuates chemotherapy induced degradation of ΔNp63α . These data demonstrate that NF-κΒ plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NF-κΒ may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.  相似文献   

17.
Stem cells are a source of differentiated cells in multiple tissues. If genetic alterations occur in stem cells, the problem persists and malignant cancers may arise. DeltaNp63alpha-a homologue of the tumor suppressor p53-is exclusively expressed in proliferating undifferentiated epithelial cells and cancer cells of epidermal origin. Here, we show that DeltaNp63alpha antagonizes DNA damage-induced apoptosis in a p53-independent manner. We found that upon cellular injury, DeltaNp63alpha must be downregulated before apoptotic program can be activated. The 5637 cell line has abundant levels of DeltaNp63alpha and mutant p53, and it is resistant to DNA damage-induced apoptosis. The knockdown of DeltaNp63alpha by RNA interference sensitized these cells to apoptosis upon genotoxic insult. This suggests that DeltaNp63alpha plays an anti-apoptotic role regardless of the p53 status. Considering the frequent mutations of p53 in tumor cells, our results provide important implications for the treatment of cancers in which p63 is amplified.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号