首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heredia VV  Penning TM 《Biochemistry》2004,43(38):12028-12037
3Alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) catalyze the interconversion between 5alpha-dihydrotestosterone (5alpha-DHT), the most potent androgen, and 3alpha-androstanediol (3alpha-diol), a weak androgen metabolite. To identify the rate-determining step in this physiologically important reaction, rat liver 3alpha-HSD (AKR1C9) was used as the protein model for the human homologues in fluorescence stopped-flow transient kinetic and kinetic isotope effect studies. Using single and multiple turnover experiments to monitor the NADPH-dependent reduction of 5alpha-DHT, it was found that k(lim) and k(max) values were identical to k(cat), indicating that chemistry is rate-limiting overall. Kinetic isotope effect measurements, which gave (D)k(cat) = 2.4 and (D)2(O)k(cat) = 3.0 at pL 6.0, suggest that the slow chemical transformation is significantly rate-limiting. When the NADP(+)-dependent oxidation of 3alpha-diol was monitored, single and multiple turnover experiments showed a k(lim) and burst kinetics consistent with product release as being rate-limiting overall. When NAD(+) was substituted for NADP(+), burst phase kinetics was eliminated, and k(max) was identical to k(cat). Thus with the physiologically relevant substrates 5alpha-DHT plus NADPH and 3alpha-diol plus NAD(+), the slowest event is chemistry. R276 forms a salt-linkage with the phosphate of 2'-AMP, and when it is mutated, tight binding of NAD(P)H is no longer observed [Ratnam, K., et al. (1999) Biochemistry 38, 7856-7864]. The R276M mutant also eliminated the burst phase kinetics observed for the NADP(+)-dependent oxidation of 3alpha-diol. The data with the R276M mutant confirms that the release of the NADPH product is the slow event; and in its absence, chemistry becomes rate-limiting. W227 is a critical hydrophobic residue at the steroid binding site, and when it is mutated to alanine, k(cat)/K(m) for oxidation is significantly depressed. Burst phase kinetics for the NADP(+)-dependent turnover of 3alpha-diol by W227A was also abolished. In the W227A mutant, the slow release of NADPH is no longer observed since the chemical transformation is now even slower. Thus, residues in the cofactor and steroid-binding site can alter the rate-determining step in the NADP(+)-dependent oxidation of 3alpha-diol to make chemistry rate-limiting overall.  相似文献   

2.
Jin Y  Penning TM 《Biochemistry》2006,45(43):13054-13063
Human type 3 3alpha-hydroxysteroid dehydrogenase, or aldo-keto reductase (AKR) 1C2, eliminates the androgen signal in human prostate by reducing 5alpha-dihydrotestosterone (DHT, potent androgen) to form 3alpha-androstanediol (inactive androgen), thereby depriving the androgen receptor of its ligand. The k(cat) for the NADPH-dependent reduction of DHT catalyzed by AKR1C2 is 0.033 s(-1). We employed transient kinetics and kinetic isotope effects to dissect the contribution of discrete steps to this low k(cat) value. Stopped-flow experiments to measure the formation of the AKR1C2.NADP(H) binary complex indicated that two slow isomerization events occur to yield a tight complex. A small primary deuterium isotope effect on k(cat) (1.5) and a slightly larger effect on k(cat)/K(m) (2.1) were observed in the steady state. In the transient state, the maximum rate constant for the single turnover of DHT (k(trans)) was determined to be 0.11 s(-1) for the NADPH-dependent reaction, which was approximately 4-fold greater than the corresponding k(cat) x k(trans) was significantly reduced when NADPD was substituted for NADPH, resulting in an apparent (D)k(trans) of 3.5. Thus, the effects of isotopic substitution on the hydride transfer step were masked by slow events that follow or precede the chemical transformation. Transient multiple-turnover reactions generated curvilinear reaction traces, consistent with the product formation and release occurring at comparable rates. Global fitting analysis of the transient kinetic data enabled the estimate of the rate constants for the three-step cofactor binding/release model and for the minimal ordered bi-bi turnover mechanism. Results were consistent with a kinetic mechanism in which a series of slow events, including the chemical step (0.12 s(-1)), the release of the steroid product (0.081 s(-1)), and the release of the cofactor product (0.21 s(-1)), combine to yield the overall observed low turnover number.  相似文献   

3.
Aldo-keto reductase (AKR1C) isoforms can regulate ligand access to nuclear receptors by acting as hydroxysteroid dehydrogenases. The principles that govern steroid hormone binding and steroid turnover by these enzymes were analyzed using rat 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD, AKR1C9) as the protein model. Systematic alanine scanning mutagenesis was performed on the substrate-binding pocket as defined by the crystal structure of the 3alpha-HSD.NADP(+).testosterone ternary complex. T24, L54, F118, F129, T226, W227, N306, and Y310 were individually mutated to alanine, while catalytic residues Y55 and H117 were unaltered. The effects of these mutations on the ordered bi-bi mechanism were examined. No mutations changed the affinity for NADPH by more than 2-3-fold. Fluorescence titrations of the energy transfer band of the E.NADPH complex with competitive inhibitors testosterone and progesterone showed that the largest effect was a 23-fold decrease in the affinity for progesterone in the W227A mutant. By contrast, changes in the K(d) for testosterone were negligible. Examination of the k(cat)/K(m) data for these mutants indicated that, irrespective of steroid substrate, the bimolecular rate constant was more adversely affected when alanine replaced an aromatic hydrophobic residue. By far, the greatest effects were on k(cat) (decreases of more than 2 log units), suggesting that the rate-determining step was either altered or slowed significantly. Single- and multiple-turnover experiments for androsterone oxidation showed that while the wild-type enzyme demonstrated a k(lim) and burst kinetics consistent with slow product release, the W227A and F118A mutants eliminated this kinetic profile. Instead, single- and multiple-turnover experiments gave k(lim) and k(max) values identical with k(cat) values, respectively, indicating that chemistry was now rate-limiting overall. Thus, conserved residues within the steroid-binding pocket affect k(cat) more than K(d) by influencing the rate-determining step of steroid oxidation. These findings support the concept of enzyme catalysis in which the correct positioning of reactants is essential; otherwise, k(cat) will be limited by the chemical event.  相似文献   

4.
In this report, we describe the isolation and characterization of a cDNA encoding an enzyme that exhibits catalytic characteristics of a 3(alpha-->beta)-hydroxysteroid epimerase (3(alpha-->beta)-HSE). The enzyme overexpressed in human 293 embryonic kidney cells transforms androsterone into epi-androsterone in two steps: the oxidation of androsterone to 5 alpha-androstane-3,17-dione, followed by the reduction of the latter to epi-androsterone. The reverse reaction, 3(beta-->alpha)-hydroxysteroid epimeration, is approximately 10-fold weaker. These results are confirmed by V(max)/K(m) determination, which shows that the enzyme catalyzes the oxidation of androsterone to 5 alpha-androstane-3,17-dione and the reduction of 5 alpha-androstane-3,17-dione to epi-androsterone more efficiently than the reverse reactions. The selective catalysis of the reaction following the 3(alpha-->beta) direction is also observed in intact transfected cells in culture, which better reflect physiological conditions. In vitro assays reveal that the recombinant enzyme prefers NAD(+) and NADH as cofactors and could recognize both C-19 and C-21 3 alpha-hydroxysteroids as substrates. DNA sequence analysis predicts a protein of 317 amino acids. Tissue distribution analysis using RT-PCR reveals that the mRNA of the enzyme is expressed in various tissues, including liver, brain, prostate, adrenal, and uterus, with the most abundant expression in the liver. Because active hydroxysteroids generally exert their effect in a stereo-specific manner, 3(alpha-->beta)-HSE could thus potentially play an important role in regulating the biological activities of various steroids.  相似文献   

5.
An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerevisiae, has been shown to mitigate the toxicity of FFA and HMF by catalyzing the NADPH-dependent conversion to corresponding alcohols, furfuryl alcohol (FFOH) and 5-hydroxymethylfurfuryl alcohol (HMFOH). At pH 7.0 and 25°C, purified Ari1p catalyzes the NADPH-dependent reduction of substrates with the following values (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFA (23.3, 1.82, 12.8), HMF (4.08, 0.173, 23.6), and dl-glyceraldehyde (2.40, 0.0650, 37.0). When acting on HMF and dl-glyceraldehyde, the enzyme operates through an equilibrium ordered kinetic mechanism. In the physiological direction of the reaction, NADPH binds first and NADP(+) dissociates from the enzyme last, demonstrated by k(cat) of HMF and dl-glyceraldehyde that are independent of [NADPH] and (K(ia)(NADPH)/k(cat)) that extrapolate to zero at saturating HMF or dl-glyceraldehyde concentration. Microscopic kinetic parameters were determined for the HMF reaction (HMF+NADPH?HMFOH+NADP(+)), by applying steady-state, presteady-state, kinetic isotope effects, and dynamic modeling methods. Release of products, HMFOH and NADP(+), is 84% rate limiting to k(cat) in the forward direction. Equilibrium constants, [NADP(+)][FFOH]/[NADPH][FFA][H(+)]=5600×10(7)M(-1) and [NADP(+)][HMFOH]/[NADPH][HMF][H(+)]=4200×10(7)M(-1), favor the physiological direction mirrored by the slowness of hydride transfer in the non-physiological direction, NADP(+)-dependent oxidation of alcohols (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFOH (0.221, 0.00158, 140) and HMFOH (0.0105, 0.000104, 101).  相似文献   

6.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

7.
The dual nucleotide cofactor-specific enzyme, 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) from Pseudomonas sp. B-0831, is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Transient-phase kinetic studies using the fluorescence stopped-flow method were conducted with 3alpha-HSD to characterize the nucleotide binding mechanism. The binding of oxidized nucleotides, NAD(+), NADP(+) and nicotinic acid adenine dinucleotide (NAAD(+)), agreed well with a one-step mechanism, while that of reduced nucleotide, NADH, showed a two-step mechanism. This difference draws attention to previous characteristic findings on rat liver 3alpha-HSD, which is a member of the aldo-keto reductase (AKR) superfamily. Although functionally similar, AKRs are structurally different from SDRs. The dissociation rate constants associated with the enzyme-nucleotide complex formation were larger than the k(cat) values for either oxidation or reduction of substrates, indicating that the release of cofactors is not rate-limiting overall. It should also be noted that k(cat) for a substrate, cholic acid, with NADP(+) was only 6% of that with NAD(+), and no catalytic activity was detectable with NAAD(+), despite the similar binding affinities of nucleotides. These results suggest that a certain type of nucleotide can modulate nucleotide-binding mode and further the catalytic function of the enzyme.  相似文献   

8.
Testosterone formation from pregnenolone (3β-hydroxy-5-pregnen-20-one) and progesterone in testis of the Stanley-Gumbreck pseudohermaphrodite (Ps) adult rat is greatly reduced in comparison to the normal (Nl) adult rat testis. In an attempt to determine whether this defect is congenital or acquired postnatally with increasing age, minced testis of 1-month-old Ps and Nl rats were incubated with progesterone, and the labeled metabolites identified. Almost equal amounts of progesterone were metabolized by both Ps and Nl testis. In mince incubations without NADPH nearly as much testosterone and 4-androstene-3,17-dione accumulated in the Ps as in the Nl testis. Very little androsterone and 5α-androstane-3α,17β-diol were formed in these incubations. When minces were incubated with progesterone in the presence of NADPH, testosterone and 4-androstene-3,17-dione accumulation was greatly reduced, and instead 5α-androstane-3α,17β-diol was formed as the major product by Nl testis and androsterone by Ps testis. Neither heparin, a 5α-reductase inhibitor, nor glucose-6-phosphate dehydrogenase alone significantly influenced progesterone metabolism or the accumulation of testosterone or 4-androstene-3,17-dione in either Ps or Nl testis. These results indicated that the 5α-reductase activity in both the Ps and N1 testis is dependent only on NADPH. Although studies were not carried out in younger rats (2–5 days of age), our results are in agreement with previous studies of Goldstein and Wilson who demonstrated equal accumulation of testosterone in incubations of testis from normal and Tfm/y mice. However, it is apparent that differences between Nl and Ps testis may be revealed only under conditions which allow maximum rates of 17-oxo- and 5α-reductions.  相似文献   

9.
Nidetzky B  Klimacek M  Mayr P 《Biochemistry》2001,40(34):10371-10381
Microbial xylose reductase, a representative aldo-keto reductase of primary sugar metabolism, catalyzes the NAD(P)H-dependent reduction of D-xylose with a turnover number approximately 100 times that of human aldose reductase for the same reaction. To determine the mechanistic basis for that physiologically relevant difference and pinpoint features that are unique to the microbial enzyme among other aldo/keto reductases, we carried out stopped-flow studies with wild-type xylose reductase from the yeast Candida tenuis. Analysis of transient kinetic data for binding of NAD(+) and NADH, and reduction of D-xylose and oxidation of xylitol at pH 7.0 and 25 degrees C provided estimates of rate constants for the following mechanism: E + NADH right arrow over left arrow E.NADH right arrow over left arrow E.NADH + D-xylose right arrow over left arrow E.NADH.D-xylose right arrow over left arrow E.NAD(+).xylitol right arrow over left arrow E.NAD(+) right arrow over left arrow E.NAD(+) right arrow over left arrow E + NAD(+). The net rate constant of dissociation of NAD(+) is approximately 90% rate limiting for k(cat) of D-xylose reduction. It is controlled by the conformational change which precedes nucleotide release and whose rate constant of 40 s(-)(1) is 200 times that of completely rate-limiting E.NADP(+) --> E.NADP(+) step in aldehyde reduction catalyzed by human aldose reductase [Grimshaw, C. E., et al. (1995) Biochemistry 34, 14356-14365]. Hydride transfer from NADH occurs with a rate constant of approximately 170 s(-1). In reverse reaction, the E.NADH --> E.NADH step takes place with a rate constant of 15 s(-1), and the rate constant of ternary-complex interconversion (3.8 s(-1)) largely determines xylitol turnover (0.9 s(-1)). The bound-state equilibrium constant for C. tenuis xylose reductase is estimated to be approximately 45 (=170/3.8), thus greatly favoring aldehyde reduction. Formation of productive complexes, E.NAD(+) and E.NADH, leads to a 7- and 9-fold decrease of dissociation constants of initial binary complexes, respectively, demonstrating that 12-fold differential binding of NADH (K(i) = 16 microM) vs NAD(+) (K(i) = 195 microM) chiefly reflects difference in stabilities of E.NADH and E.NAD(+). Primary deuterium isotope effects on k(cat) and k(cat)/K(xylose) were, respectively, 1.55 +/- 0.09 and 2.09 +/- 0.31 in H(2)O, and 1.26 +/- 0.06 and 1.58 +/- 0.17 in D(2)O. No deuterium solvent isotope effect on k(cat)/K(xylose) was observed. When deuteration of coenzyme selectively slowed the hydride transfer step, (D)()2(O)(k(cat)/K(xylose)) was inverse (0.89 +/- 0.14). The isotope effect data suggest a chemical mechanism of carbonyl reduction by xylose reductase in which transfer of hydride ion is a partially rate-limiting step and precedes the proton-transfer step.  相似文献   

10.
MICALs form a conserved multidomain protein family essential for cytoskeletal rearrangements. To complement structural information available, we produced the FAD-containing monooxygenase-like domain of human MICAL-1 (MICAL-MO) in forms differing for the presence and location of a His-tag, which only influences the protein yields. The K(m) for NADPH of the NADPH oxidase reaction is sensitive to ionic strength and type of ions. The apparent k(cat) (pH 7) is limited by enzyme reduction by NADPH, which occurs without detectable intermediates, as established by anaerobic rapid reaction experiments. The sensitivity to ionic strength and type of ions and the pH dependence of the steady-state kinetic parameters extend MICAL-MO similarity with enzymes of the p-hydroxybenzoate hydroxylase class at the functional level. The reaction is also sensitive to solvent viscosity, providing a tool to monitor the conformational changes predicted to occur during turnover. Finally, it was confirmed that MICAL-MO promotes actin depolymerization, and it was shown that F-actin, but not G-actin, stimulates NADPH oxidation by increasing k(cat) and k(cat)/K(NADPH) (≈5 and ≈200-fold, respectively) with an apparent K(m) for actin of 4.7μM, under conditions that stabilize F-actin. The time-course of NADPH oxidation shows substrate recycling, indicating the possible reversibility of MICAL effect.  相似文献   

11.
Growing cultures of Clostridium paraputrificum transformed 4-androsten-3,17-dione to 3 alpha-hydroxy-5 beta-androstan-17-one in a sequential manner with 5 beta-androstan-3,17-dione as an intermediate. The addition of 1.5 mM menadione to log-phase cultures which had formed 5 beta-androstan-3,17-dione resulted in a partial reoxidation of this steroid to 4-androsten-3,17-dione. However, this treatment also resulted in transient inhibition of culture growth. Resumption of growth was accompanied by complete reduction of 4-androsten-3,17-dione to 5 beta-androstan-3,17-dione. Cell extracts of C. paraputrificum were capable of carrying out these reductive transformations in the absence of added cofactors. However, Sephadex G-25 treated extracts required NADH or NADPH for these reactions. A flavin nucleotide, either FAD (plus NADH or NADPH) or FMN (plus NADH) was highly stimulatory for 4-androsten-3,17-dione reduction to 5 beta-androstan-3,17-dione. NADH was the preferred reduced pyridine nucleotide for reduction of the C4-C5 double bond, while time-course measurements suggested that NADPH was the preferred donor for reduction of the 3-keto group.  相似文献   

12.
Xylose reductase from the yeast Candida tenuis (CtXR) is a family 2 member of the aldo-keto reductase (AKR) superfamily of proteins and enzymes. Active site His-113 is conserved among AKRs, but a unified mechanism of how it affects catalytic activity is outstanding. We have replaced His-113 by alanine using site-directed mutagenesis, determined a 2.2 A structure of H113A mutant bound to NADP(+), and compared catalytic reaction profiles of NADH-dependent reduction of different aldehydes catalyzed by the wild type and the mutant. Deuterium kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m xylose) show that, relative to the wild type, the hydride transfer rate constant (k(7) approximately 0.16 s(-1)) has decreased about 1000-fold in H113A whereas xylose binding was not strongly affected. No solvent isotope effect was seen on k(cat) and k(cat)/K(m xylose) for H113A, suggesting that proton transfer has not become rate-limiting as a result of the mutation. The pH profiles of log(k(cat)/K(m xylose)) for the wild type and H113A decreased above apparent pK(a) values of 8.85 and 7.63, respectively. The DeltapK(a) of -1.2 pH units likely reflects a proximally disruptive character of the mutation, affecting the position of Asp-50. A steady-state kinetic analysis for H113A-catalyzed reduction of a homologous series of meta-substituted benzaldehyde derivatives was carried out, and quantitative structure-reactivity correlations were used to factor the observed kinetic substituent effect on k(cat) and k(cat)/K(m aldehyde) into an electronic effect and bonding effects (which are lacking in the wild type). Using the Hammett sigma scale, electronic parameter coefficients (rho) of +0.64 (k(cat)) and +0.78 (k(cat)/K(m aldehyde)) were calculated and clearly differ from rho(k(cat)/K(aldehyde)) and rho(k(cat)) values of +1.67 and approximately 0.0, respectively, for the wild-type enzyme. Hydride transfer rate constants of H113A, calculated from kinetic parameters and KIE data, display a substituent dependence not seen in the corresponding wild-type enzyme rate constants. An enzymic mechanism is proposed in which His-113, through a hydrogen bond from Nepsilon2 to aldehyde O1, assists in catalysis by optimizing the C=O bond charge separation and orbital alignment in the ternary complex.  相似文献   

13.
Steady state kinetic analysis at pH 7.0 of the reduction of DL-glyceraldehyde by pig muscle aldose reductase showed that the enzyme follows a sequential ordered mechanism with NADPH binding first. However, the "off constant" for NADP+ in the forward direction was 1 order of magnitude less than the kcat. Analysis of this anomaly by pre-steady state kinetics using stopped-flow fluorescence spectroscopy showed that this could be accounted for by isomerization of the enzyme-NADP+ complex and that the rate of isomerization is the rate-limiting step. The rate constant for this step was of the same order of magnitude as the kcat for the forward reaction. Fluorescence emission spectra of free and NADP(H)-bound enzyme suggested a conformational change upon binding of coenzyme. In the reverse direction (oxidation of glycerol) pre-steady state and steady state kinetic analyses were consistent with the rate-limiting step occurring before isomerization of the enzyme-NADPH complex. We conclude, therefore, that during the kinetic mechanism of the reduction of aldehydes by aldose reductase, a slow (kinetically detectable) conformational change in the enzyme occurs upon coenzyme binding. Since NADPH and NADP+ bind to the enzyme very tightly, this has implications for the targeting and binding of drugs that are aldose reductase inhibitors.  相似文献   

14.
Glutathione reductase has been found to catalyze an NAD(P)H-dependent electron transfer to 2,4,6-trinitrobenzenesulfonate (TNBS). In the presence of oxygen TNBS is not consumed in the reaction, but is rapidly reoxidized with concomitant production of hydrogen peroxide. Cytochrome c can replace oxygen as the final electron acceptor, indicating that a one-electron transfer takes place. The rate is slightly higher in the absence than in the presence of oxygen, ruling out superoxide anion as an obligatory intermediate in cytochrome c reduction. In the absence of oxygen (or cytochrome c), TNBS limits the reaction and accepts a total of four electrons. The TNBS-dependent NADPH (or NADH) oxidation is markedly stimulated by NADP+, and to a smaller extent also by NAD+. The TNBS-dependent reactions are inhibited by excess of NADPH but not by NADH. The kinetics of these reactions are consistent with a branching reaction mechanism in which a pathway including a ternary complex between the two-electron reduced enzyme and NADP+ has the highest turnover. NADPH-dependent reductions of ferricyanide or 2,6-dichloroindophenol catalyzed by glutathione reductase are also markedly influenced by NADP+. Evidently NADP+ facilitates a shift of the catalyzed reaction from the normal two-electron reduction of glutathione disulfide to a more unspecific one-electron reduction of other acceptors. Spectral as well as kinetic data suggest that the rate of radical formation limits the reactions with the artificial electron acceptors and that NADP+ promotes this rate-limiting step.  相似文献   

15.
The aldo-keto reductase rabbit 20alpha-hydroxysteroid dehydrogenase (rb20alpha-HSD; AKR1C5) is less selective than other HSDs, since it exerts its activity both on androgens (C19 steroids) and progestins (C21 steroids). In order to identify the molecular determinants responsible for this reduced selectivity, binary (NADPH) and ternary (NADP(+)/testosterone) complex structures were solved to 1.32A and 2.08A resolution, respectively. Inspection of the cofactor-binding cavity led to the identification of a new interaction between side-chains of residues His222 and Lys270, which cover the central phosphate chain of the cofactor, reminiscent of the "safety-belt" found in other aldo-keto reductases. Testosterone is stabilized by a phenol/benzene tunnel composed of side-chains of numerous residues, among which Phe54, which forces the steroid to take up an orientation markedly contrasting with that found in HSD ternary complexes reported. Combining structural, site-directed mutagenesis, kinetic and fluorescence titration studies, we found that the selectivity of rb20alpha-HSD is mediated by (i) the relaxation of loop B (residues 223-230), partly controlled by the nature of residue 230, (ii) the nature of the residue found at position 54, and (iii) the residues found in the C-terminal tail of the protein especially the side-chain of the amino acid 306.  相似文献   

16.
K Ratnam  H Ma  T M Penning 《Biochemistry》1999,38(24):7856-7864
Fluorescence stopped-flow studies were conducted with recombinant rat liver 3 alpha-HSD, an aldo-keto reductase (AKR) that plays critical roles in steroid hormone inactivation, to characterize the binding of nicotinamide cofactor, the first step in the kinetic mechanism. Binding of NADP(H) involved two events: the fast formation of a loose complex (E.NADP(H)), followed by a conformational change in enzyme structure leading to a tightly bound complex (E.NADP(H)), which was observed as a fluorescence kinetic transient. Binding of NAD(H) was not characterized by a similar kinetic transient, implying a difference in the mode of binding of the two cofactors. Unlike previously characterized AKRs, the rates associated with the formation and decay of E.NADP(H) and E.NADP(H) were much faster than kcat for the oxidoreduction of various substrates, indicating that binding and release of cofactor is not rate-limiting overall in 3 alpha-HSD. Mutation of Arg 276, a highly conserved residue in AKRs that forms a salt bridge with the adenosine 2'-phosphate of NADP(H), resulted in large changes in Km and Kd for NADP(H) that were not observed with NAD(H). The loss in free energy associated with the increase in Kd for NADP(H) is consistent with the elimination of an electrostatic link. Importantly, this mutation abolished the kinetic transient associated with NADPH binding. Thus, anchoring of the adenosine 2'-phosphate of NADPH by Arg 276 appears to be obligatory for the fluorescence kinetic transients to be observed. The removal of Trp 86, a residue involved in fluorescence energy transfer with NAD(P)H, also abolished the kinetic transient, but mutation of Trp 227, a residue on a mobile loop associated with cofactor binding, did not. It is concluded that in 3 alpha-HSD, the time dependence of the change in Trp 86 fluorescence is due to cofactor anchoring, and thus, Trp 86 is a distal reporter of this event. Further, the loop movement that accompanies cofactor binding is spectrally silent.  相似文献   

17.
The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.  相似文献   

18.
The cDNA of a novel human glutathione transferase (GST) of the Alpha class was cloned, and the corresponding protein, denoted GST A3-3, was heterologously expressed and characterized. GST A3-3 was found to efficiently catalyze obligatory double-bond isomerizations of Delta(5)-androstene-3,17-dione and Delta(5)-pregnene-3,20-dione, precursors to testosterone and progesterone, respectively, in steroid hormone biosynthesis. The catalytic efficiency (k(cat)/K(m)) with Delta(5)-androstene-3,17-dione was determined as 5 x 10(6) m(-1) s(-1), which is considerably higher than with any other GST substrate tested. The rate of acceleration afforded by GST A3-3 is 6 x 10(8) based on the ratio between k(cat) and the rate constant for the nonenzymatic isomerization of Delta(5)-androstene-3,17-dione. Besides being high in absolute numbers, the k(cat)/K(m) value of GST A3-3 exceeds by a factor of approximately 230 that of 3beta-hydroxysteroid dehydrogenase/isomerase, the enzyme generally considered to catalyze the Delta(5)-Delta(4) double-bond isomerization. Furthermore, GSTA3-specific polymerase chain reaction analysis of cDNA libraries from various tissues showed a message only in those characterized by active steroid hormone biosynthesis, indicating a selective expression of GST A3-3 in these tissues. Based on this finding and the high activity with steroid substrates, we propose that GST A3-3 has evolved to catalyze isomerization reactions that contribute to the biosynthesis of steroid hormones.  相似文献   

19.
The mechanism of action of yeast beta-hydroxy-beta-methylglutaryl-coenzyme A reductase has been investigated through kinetic studies on the oxidation of mevaldate by nicotinamide adeninine dinucleotide phosphate (NADP) in the presence of coenzyme A (CoA) and on the reduction of mevaldate by reduced NADP (NADPH) in the absence of presence of CoA or acetyl-CoA. NADP and mevalonate were also used as product inhibitors of the reduction of mevaldate. In the reduction of mevaldate to mevalonate, coenzyme A and acetyl-CoA decreased the Km for mevaldate 30- and 3-fold, respectively. Both compounds increased the Vmax 1.5-fold. These results suggest that CoA is an allosteric activator for the second reductive step and that it acts by enhancing the binding of mevaldate. The intersecting patterns obtained from initial velocities and the patterns produced by product inhibitions suggest the following features of the mechanism. The binding of substrates and release of products proceeds sequentially in both reductive steps, and is ordered throughout or random with respect to the binding of the beta-hydroxy-beta-methylglutaryl-coenzymeA and the first NADPH. The binding of NADPH enhances the binding of the beta-hydroxy-beta-methylglutaryl portion of the CoA ester and the binding of free mevaldate, whereas the binding of NADP leads to an increased affinity of the enzyme for the hemithioacetal (of mevaldate and CoA) and for mevalonate. Thus, the replacement of NADP by NADPH after the first reductive step promotes the conversion of the hemithioacetal to the free carbonyl form, which is then rapidly reduced. The products, CoA and mevalonic acid, of the second reductive step leave the enzyme before the release of the second NADP. This release of the last product is probably the rate-limiting step for the overall process.  相似文献   

20.
Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号