首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious working environments. In the complex amphibious environment, amphibious robots should possess multi-capabilities to walk on rough ground, maneuver underwater, and pass through transitional zones such as sandy and muddy terrain. These capabilities require a high-performance propulsion mechanism for the robots. To tackle a complex task, a novel amphibious robot (AmphiHex-I) with,transformable fin-leg composite propulsion mechanisms is developed. With the fin-leg composite propulsions, AmphiHex-I can walk on rough and soft substrates and swim in water with many maneuvers. This paper presents the structural design of the transformable fin-leg propulsion mechanism and its driving module. A hybrid model is used to explore the dynamics between the trans- formable legs and transitional environment such as granular medium. The locomotion performances of legs with various ellip- tical shapes are analyzed, which is verified by the coincidence between the model predictions and the simulation results. Further, an orthogonal experiment is conducted to study the locomotion performance of a two-legged platform walking with an asyn- chronous gait in the sandy and muddy terrain. Finally, initial experiments of AmphiHex-I walking on various lands and swimming in water are implemented. These results verify that the transformable fin-leg mechanisms enable the amphibious robot to pass through a complex, amphibious working environment.  相似文献   

2.
Arthropods are the most successful members of the animal kingdom largely because of their ability to move efficiently through a range of environments. Their agility has not been lost on engineers seeking to design agile legged robots. However, one cannot simply copy mechanical and neural control systems from insects into robotic designs. Rather one has to select the properties that are critical for specific behaviors that the engineer wants to capture in a particular robot. Convergent evolution provides an important clue to the properties of legged locomotion that are critical for success. Arthropods and vertebrates evolved legged locomotion independently. Nevertheless, many neural control properties and mechanical schemes are remarkably similar. Here we describe three aspects of legged locomotion that are found in both insects and vertebrates and that provide enhancements to legged robots. They are leg specialization, body flexion and the development of a complex head structure. Although these properties are commonly seen in legged animals, most robotic vehicles have similar legs throughout, rigid bodies and rudimentary sensors on what would be considered the head region. We describe these convergent properties in the context of robots that we developed to capture the agility of insects in moving through complex terrain.  相似文献   

3.
In research on small mobile robots and biomimetic robots,locomotion ability remains a major issue despite many advances in technology.However,evolution has led to there being many real animals capable of excellent locomotion.This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task.We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning".The parasitic robot,which is attached to the turtle,can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction.After training sessions over five weeks,the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task.This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields,and could also act as a useful interaction system for the behavioral sciences.  相似文献   

4.
There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off velocity, and hence jumping performance is independent of size because the energy that differently sized geometrically scaled jumpers can generate with their muscles is proportional to their mass. In this article it is shown, based on a simple energy balance, that it is incorrect to presume that jump height does not depend on size. Contrary to common belief, size as such has does have an effect on take-off velocity, putting small jumpers at a mechanical advantage, as is shown analytically. To quantify the effect of size on take-off velocity, a generic jumper model was scaled geometrically and evaluated numerically. While a 70-kg jumper took off at 2.65 m/s and raised its CM by 0.36 m after take-off, a perfectly geometrically similar jumper of 0.7 g reached a take-off velocity of 3.46 m/s and raised its CM by 0.61 m. The reason for the better performance of small jumpers is their higher efficacy in transforming the energy generated by the actuators into energy due to vertical velocity of the CM. Considering the ecological and evolutionary relevance of different definitions of jump height, size-dependent efficacy might explain why habitual jumping is especially prominent among small animals such as insects.  相似文献   

5.
This paper presents the design and development of a starfish-like soft robot with flexible rays and the implementation of multi-gait locomotion using Shape Memory Alloy (SMA) actuators. The design principle was inspired by the starfish, which possesses a remarkable symmetrical structure and soft internal skeleton. A soft robot body was constructed by using 3D printing technology. A kinematic model of the SMA spring was built and developed for motion control according to displacement and force requirements. The locomotion inspired from starfish was applied to the implementation of the multi-ray robot through the flexible actuation induced multi-gait movements in various environments. By virtue of the proposed ray control patterns in gait transition, the soft robot was able to cross over an obstacle approximately twice of its body height. Results also showed that the speed of the soft robot was 6.5 times faster on sand than on a clammy rough terrain. These experiments demonstrated that the bionic soft robot with flexible rays actuated by SMAs and multi-gait locomotion in proposed patterns can perform successfully and smoothly in various terrains.  相似文献   

6.
In this paper six theories of bipedal walking, and the evidence in support of the theories, are reviewed. They include: evolution, minimising energy consumption, maturation in children, central pattern generators, linking control and effect, and robots on two legs. Specifically, the six theories posit that: (1) bipedalism is the fundamental evolutionary adaptation that sets hominids--and therefore humans--apart from other primates; (2) locomotion is the translation of the centre of gravity along a pathway requiring the least expenditure of energy; (3) when a young child takes its first few halting steps, his or her biomechanical strategy is to minimise the risk of falling; (4) a dedicated network of interneurons in the spinal cord generates the rhythm and cyclic pattern of electromyographic signals that give rise to bipedal gait; (5) bipedal locomotion is generated through global entrainment of the neural system on the one hand, and the musculoskeletal system plus environment on the other; and (6) powered dynamic gait in a bipedal robot can be realised only through a strategy which is based on stability and real-time feedback control. The published record suggests that each of the theories has some measure of support. However, it is important to note that there are other important theories of locomotion which have not been covered in this review. Despite such omissions, this odyssey has explored the wide spectrum of bipedal walking, from its origins through to the integration of the nervous, muscular and skeletal systems.  相似文献   

7.
The realization of a high-speed running robot is one of the most challenging problems in developing legged robots.The excellent performance of cheetahs provides inspiration for the control and mechanical design of such robots.This paper presents a three-dimensional model of a cheetah that predicts the locomotory behaviors of a running cheetah.Applying biological knowledge of the neural mechanism,we control the muscle flexion and extension during the stance phase,and control the positions of the joints in the flight phase via a PD controller to minimize complexity.The proposed control strategy is shown to achieve similar locomotion of a real cheetah.The simulation realizes good biological properties,such as the leg retraction,ground reaction force,and spring-like leg behavior.The stable bounding results show the promise of the controller in high-speed locomotion.The model can reach 2.7 m·s- 1 as the highest speed,and can accelerate from 0 to 1.5 m·s -1 in one stride cycle.A mechanical structure based on this simulation is designed to demonstrate the control approach,and the most recently developed hindlimb controlled by the proposed controller is presented in swinging-leg experiments and jump-force experiments.  相似文献   

8.
Artificial evolution of physical systems is a stochastic optimization method in which physical machines are iteratively adapted to a target function. The key for a meaningful design optimization is the capability to build variations of physical machines through the course of the evolutionary process. The optimization in turn no longer relies on complex physics models that are prone to the reality gap, a mismatch between simulated and real-world behavior. We report model-free development and evaluation of phenotypes in the artificial evolution of physical systems, in which a mother robot autonomously designs and assembles locomotion agents. The locomotion agents are automatically placed in the testing environment and their locomotion behavior is analyzed in the real world. This feedback is used for the design of the next iteration. Through experiments with a total of 500 autonomously built locomotion agents, this article shows diversification of morphology and behavior of physical robots for the improvement of functionality with limited resources.  相似文献   

9.
New findings in the nervous system of invertebrates have shown how a number of features of central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms. In this paper we consider recently revealed strategies that living CPGs follow to design CPG control paradigms for modular robots. To illustrate them, we divide the task of designing an example CPG for a modular robot into independent problems. We formulate each problem in a general way and provide a bio-inspired solution for each of them: locomotion information coding, individual module control and inter-module coordination. We analyse the stability of the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and recovery after perturbations. In both cases, the robot is able to autonomously find a stable effective locomotion state. Finally, we discuss how these strategies can result in a more general design approach for CPG-based locomotion.  相似文献   

10.
A preliminary account is given of the jump of the click beetle, Athous haemorrhoidalis (F.). The jump is normally made from an inverted position. It involves a jack-knifing movement whereby a prosternal peg is slid very rapidly down a smooth track into a mesosternal pit. The muscles which produce this movement are allowed to build up tension by a friction hold on the dorsal side of the peg. The anatomy of this jumping mechanism is briefly described. Ciné recording showed that the jump was usually nearly vertical and could exceed 0.3m in height; the beetle normally rotated several times head over tail during a jump. The jump was produced by a very rapid upwards movement of the beetle's centre of gravity during the jack-knifing action. In a typical jump, a 4 × 10−5 kg beetle could be subjected to an upwards acceleration of 3800 m/s−2 (380 g). The minimum work done and the power output of the muscles causing jumping have been calculated. A simple mechanical model has been constructed to simulate a jump, and several possible ways in which the jumping mechanism could operate have been discussed.  相似文献   

11.
A jumping mechanism can be an efficient mode of motion for small robots to overcome large obstacles on the ground and rough terrain.In this paper,we present a 7 g prototype of locust-inspired jumping mechanism that uses springs,wire,reduction gears,and a motor as the actuation components.The leg structure and muscles of a locust or grasshopper were mimicked using springs and wire,springs for passive extensor muscles,and a wire as a flexor muscle.A small motor was used to slowly charge the spring through a lever and gear system,and a cam with a special profile was used as a clicking mechanism for quick release of elastic energy stored in the springs to create a sudden kick for a quick jump.Performance analysis and experiments were conducted for comparison and performance estimation of the jumping mechanism prototype.Our prototype could produce standing jumps over obstacles that were about 14 times its own size (approximate to 71 cm) and a jumping distance of 20 times its own size (approximate to 100 cm).  相似文献   

12.
Central Pattern Generators (CPGs) are a suitable paradigm to solve the problem of locomotion control in walking robots. CPGs are able to generate feed-forward signals to achieve a proper coordination among the robot legs. In literature they are often modelled as networks of coupled nonlinear systems. However the topic of feedback in these systems is rarely addressed. On the other hand feedback is essential for locomotion. In this paper the CPG for a hexapod robot is implemented through Cellular Neural Networks (CNNs). Feedback is included in the CPG controller by exploiting the dynamic properties of the CPG motor-neurons, such as synchronization issue and local bifurcations. These universal paradigms provide the essential issues to include sensory feedback in CPG architectures based on coupled nonlinear systems. Experiments on a dynamic model of a hexapod robot are presented to validate the approach introduced.  相似文献   

13.
A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophisticated system to adapt various environments.We focus on the development of a switching controller system for wheeled mobile robots in rough terrain. This system consists of two sub-systems: an environment recognition system using link angles and an adaptive control system. In the environment recognition system, we introduce a Self-Organizing Map (SOM) for clustering link angles. In the adaptive controllers, we introduce neural networks to calculate the inverse model of the wheeled mobile robot.The environment recognition system can recognize the environment in which the robot travels, and the adjustable controllers are tuned by experimental results for each environment. The dual sub-system switching controller system is experimentally evaluated. The system recognizes its environment and adapts by switching the adjustable controllers. This system demonstrates superior performance to a well-tuned single PID controller.  相似文献   

14.
This study used a subject-specific model with eight segments driven by joint torques for forward dynamics simulation to investigate the effects of initial conditions and takeoff technique on the performance of running jumps for height and distance. The torque activation profiles were varied in order to obtain matching simulations for two jumping performances (one for height and one for distance) by an elite male high jumper, resulting in a simulated peak height of 1.98m and a simulated horizontal distance of 4.38m. The peak height reached/horizontal distance travelled by the mass centre for the same corresponding initial conditions were then maximised by varying the activation timings resulting in a peak height of 2.09m and a horizontal distance of 4.67m. In a further two optimizations the initial conditions were interchanged giving a peak height of 1.82m and a horizontal distance of 4.04m. The four optimised simulations show that even with similar approach speeds the initial conditions at touchdown have a substantial effect on the resulting performance. Whilst the takeoff phase is clearly important, unless the approach phase and the subsequent touchdown conditions are close to optimal then a jumper will be unable to compensate for touchdown condition shortcomings during the short takeoff phase to achieve a performance close to optimum.  相似文献   

15.
The adoption of habitual bipedal locomotion required a backward shift of the centre of gravity of the body, to a level relative to the supporting surface area of the body and pivotal axis of the hips at which walking with extended knees became practicable. In the morphology of the immediate ancestors to hominids, there were relatively few features whose change could have effectively affected the position of the gravity vertical of the body. Weight could be distributed posteriorly mainly by increasing the mass of the hindlimbs and the kyphotic curve of the vertebral column, by developing buttocks. and by flattening the thorax and abdomen. Estimates indicate that the adoption of a suitable curvature of the vertebral column alone was not sufficient for shifting the centre of gravity behind the 'threshold of bipedalism'. A considerable increase in the mass of the hindlimbs was also required, and the addition of the mass of the buttocks may have represented the decisive factor for crossing the threshold. A possible physical enviroment in which the change to bipedalism could have taken place was a mountainous terrain with long, steep slopes, transected by gorges and precipices. In such a terrain the increase in the power and mass of both the hindlimbs and the gluteus maximus proprius muscle could have been favoured by selection, leading ultimately to a condition in which the combined effect of heavy hindlimbs. a suitable curvature of the spine and the weight of the buttocks shifted the centre of gravity of the body backwards to a level at which habitual walking with extended knees became practicable. □ Hominid evolution. bipedalism, evolutionary thresholds.  相似文献   

16.
Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.  相似文献   

17.
This study used a computer simulation model to investigate various considerations that affect optimum peak height in a running jump. A planar eight-segment computer simulation model with extensor and flexor torque generators at five joints was formulated and customised to an elite male high jumper. A simulation was matched to a recorded high jumping performance by varying the activation profiles of each of the torque generators giving a simulated peak height of 1.99m compared to the recorded performance of 2.01 m. In order to maximise the peak height reached by the mass centre in the flight phase, the activation profiles were varied, keeping the same initial conditions as in the matching simulation. Optimisations were carried out without any constraints, with constraints on the angular momentum at take-off, with further constraints on joint angles, and with additional requirements of robustness to perturbations of activation timings. A peak height of 2.37 m was achieved in the optimisation without constraints. Introducing the three constraints in turn resulted in peak heights of 2.21, 2.14 and 1.99m. With all three types of constraints included, the peak height was similar to that achieved in the recorded performance. It is concluded that such considerations have a substantial influence on optimum technique and must be included in studies using optimised simulations.  相似文献   

18.
This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with a forward dynamic musculo-skeletal model. This model consisted of four interconnected rigid segments, actuated by six Hill-type muscle actuators. The only independent input of the model was the stimulation of muscles as a function of time. This input was optimized using an objective function, in which targeting a specific sub-maximal height value was combined with minimizing the amount of muscle work produced. The characteristic changes in motion pattern observed in humans jumping to different target heights were reproduced by the model. As the target height was lowered, two major changes occurred in the motion pattern. First, the countermovement amplitude was reduced; this helped to save energy because of reduced dissipation and regeneration of energy in the contractile elements. Second, the contribution of rotation of the heavy proximal segments of the lower limbs to the vertical velocity of the centre of gravity at take-off was less; this helped to save energy because of reduced ineffective rotational energies at take-off. The simulations also revealed that, with the observed movement adaptations, muscle work was reduced through improved relative use of the muscle's elastic properties in sub-maximal jumping. According to the results of the simulations, the stereotyped motion pattern observed in sub-maximal jumping is consistent with the idea that in sub-maximal jumping, subjects are trying to achieve the targeted jump height with minimal energy expenditure.  相似文献   

19.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

20.
Water beetles are proficient drag-powered swimmers,with oar-like legs.Inspired by this mechamsm,here we propose a miniature robot,with mobility provided by a pair of legs with swimming appendages.The robot has optimized linkage structure to maximize the stroke angle,which is actuated by a single DC motor with a series of gears and a spring.A simplified swimming appendage model is proposed to calculate the deflection due to the applied drag force,and is compared with simulated data using COMSOL Multiphysics.Also,the swimming appendages are optimized by considering their locations on the legs using two fitness functions,and six different configurations are selected.We investigate the performance of the robot with various types of appendage using a high-speed camera,and motion capture cameras.The robot with the proposed configuration exhibits fast and efficient movement compared with other robots.In addition,the locomotion of the robot is analyzed by considering its dynamics,and compared with that of a water boatman (Corixidae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号