首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia–tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa–trochanter and femur–tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.  相似文献   

3.
The developmental mechanisms that regulate the relative size and shape of organs have remained obscure despite almost a century of interest in the problem and the fact that changes in relative size represent the dominant mode of evolutionary change. Here, I investigate how the Hox gene Ultrabithorax (Ubx) instructs the legs on the third thoracic segment of Drosophila melanogaster to develop with a different size and shape from the legs on the second thoracic segment. Through loss-of-function and gain-of-function experiments, I demonstrate that different segments of the leg, the femur and the first tarsal segment, and even different regions of the femur, regulate their size in response to Ubx expression through qualitatively different mechanisms. In some regions, Ubx acts autonomously to specify shape and size, whereas in other regions, Ubx influences size through nonautonomous mechanisms. Loss of Ubx autonomously reduces cell size in the T3 femur, but this reduction seems to be partially compensated by an increase in cell numbers, so that it is unclear what effect cell size and number directly have on femur size. Loss of Ubx has both autonomous and nonautonomous effects on cell number in different regions of the basitarsus, but again there is not a strong correlation between cell size or number and organ size. Total organ size appears to be regulated through mechanisms that operate at the level of the entire leg segment (femur or basitarsus) relatively independently of the behavior of individual subpopulations of cells within the segment.  相似文献   

4.
Leg movements of stick insects (Carausius morosus) making turns towards visual targets are examined in detail, and a dynamic model of this behaviour is proposed. Initial results suggest that front legs shape most of the body trajectory, while the middle and hind legs just follow external forces (Rosano H, Webb B, in The control of turning in real and simulated stick insects, vol. 4095, pp 145–156, 2006). However, some limitations of this explanation and dissimilarities in the turning behaviour of the insect and the model were found. A second set of behavioural experiments was made by blocking front tarsi to further investigate the active role of the other legs for the control of turning. The results indicate that it is necessary to have different roles for each pair of legs to replicate insect behaviour. We demonstrate that the rear legs actively rotate the body while the middle legs move sideways tangentially to the hind inner leg. Furthermore, we show that on average the middle inner and hind outer leg contribute to turning while the middle outer leg and hind inner leg oppose body rotation. These behavioural results are incorporated into a 3D dynamic robot simulation. We show that the simulation can now replicate more precisely the turns made by the stick insect. This work was supported by CONACYT México and the European Commission under project FP6-2003-IST2-004690 SPARK.  相似文献   

5.
We have studied embryogenesis of the two-spotted cricket Gryllus bimaculatus as an example of a hemimetabolous, intermediate germ insect, which is a phylogenetically basal insect and may retain primitive features. We observed expression patterns of the orthologs of the Drosophila homeotic genes, Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx) and abdominal-A (abd-A) during embryogenesis and compared the expression patterns of these genes with the more basal thysanuran insect, Thermobia domestica (the firebrat), and the derived higher dipteran insect, Drosophila melanogaster. Although Scr is expressed commonly in the presumptive posterior maxillary and labial segment in all three insects, the thoracic expression domains vary. Antp is expressed similarly in the three thoracic segments, the limbs, and the anterior abdominal region among these three insects. The early Antp expression in the firebrat and cricket obeys a segmental register in all three thoracic segments, while in Drosophila its initial expression appears in parasegments 4 and 6. Ubx is expressed in the metathoracic (T3) and abdominal segments similarly in the three insects, whereas the expression pattern in the T3 leg differs among them. abd-A is expressed in the posterior compartment of the first abdominal segment and the remaining abdominal segments in all three insects, although its posterior border varies among them.  相似文献   

6.
Many studies have shown that morphological diversity among homologous animal structures is generated by the homeotic (Hox) genes. However, the mechanisms through which Hox genes specify particular morphological features are not fully understood. We have addressed this issue by investigating how diverse sensory organ patterns are formed among the legs of the Drosophila melanogaster adult. The Drosophila adult has one pair of legs on each of its three thoracic segments (the T1-T3 segments). Although homologous, legs from different segments have distinct morphological features. Our focus is on the formation of diverse patterns of small mechanosensory bristles or microchaetae (mCs) among the legs. On T2 legs, the mCs are organized into a series of longitudinal rows (L-rows) precisely positioned along the leg circumference. The L-rows are observed on all three pairs of legs, but additional and novel pattern elements are found on T1 and T3 legs. For example, at specific positions on T1 and T3 legs, some mCs are organized into transverse rows (T-rows). Our studies indicate that the T-rows on T1 and T3 legs are established as a result of Hox gene modulation of the pathway for patterning the L-row mC bristles. Our findings suggest that the Hox genes, Sex combs reduced (Scr) and Ultrabithorax (Ubx), establish differential expression of the proneural gene achaete (ac) by modifying expression of the ac prepattern regulator, Delta (Dl), in T1 and T3 legs, respectively. This study identifies Dl as a potential link between Hox genes and the sensory organ patterning hierarchy, providing insight into the connection between Hox gene function and the formation of specific morphological features.  相似文献   

7.
As an approach to the problem of pattern formation in the insect appendage, various graft combinations were studied in the legs of the large milkweed bug Oncopeltus fasciatus. Metathoracic legs of fourth instar larvae were amputated through the tibia within 24 hr after ecdysis and grafted back onto the stumps. The orientation of the graft was altered by rotation through 90 or 180° and/or by exchanging right and left stumps and grafts, yielding seven possible orientations in addition to the control. Many of these grafts resulted in the production of one or two supernumerary regenerates of the distal segments, which appeared at the graft junction after the second postoperative ecdysis. When two supernumerary regenerates resulted, one appeared to be produced from the stump and the other from the graft. When one regenerate was present, it appeared to be a composite of material produced from both the stump and the graft. In contrast to the results obtained in cockroaches, the external face of the leg appeared to be the only one capable of giving rise to a supernumerary regenerate.  相似文献   

8.
9.
  • 1 The size–grain hypothesis ( Kaspari & Weiser, 1999 ) states that (1) as organisms decrease in size, they perceive their environment as being more rugose; (2) long legs allow organisms to step over obstacles but hinder them from entering small gaps; and (3) as the size of an organism decreases, the benefits of long legs begin to be outweighed by the costs of construction. Natural selection should therefore favour proportionally longer legs in larger organisms, thereby leading to a positive allometry between leg and body length (scaling exponent b > 1).
  • 2 Here we compare the scaling exponent of leg‐to‐body length relationships among insects that walk, walk and fly, and predominantly fly. We measured the lengths of the hind tibia, hind femur, and body length of each species.
  • 3 The taxa varied considerably in the scaling exponent b. In seven out of ten groups (Formicidae, Isoptera, Carabidae, Pentatomidae, Apidae, Lepidoptera, Odonata adult), b was significantly greater than one. However, there was no gradual decrease in b from walking to walking/flying to flying insects.
  • 4 The results of the present study provide no support for the size–grain hypothesis. We propose that leg length is not only affected by the rugosity of the environment, but also by (1) functional adaptations, (2) phylogeny, (3) lifestyle, (4) the type of insect development (hemimetabolism or holometabolism), and (5) constraints of gas exchange.
  相似文献   

10.
Sexual traits are subject to evolutionary forces that maximize reproductive benefits and minimize survival costs, both of which can depend on environmental conditions. Latitude explains substantial variation in environmental conditions. However, little is known about the relationship between sexual trait variation and latitude, although body size often correlates with latitude. We examined latitudinal variation in male and female sexual traits in 22 populations of the false blister beetle Oedemera sexualis in the Japanese Archipelago. Males possess massive hind legs that function as a female‐grasping apparatus, while females possess slender hind legs that are used to dislodge mounting males. Morphometric analyses revealed that male and female body size (elytron length), length and width of the hind femur and tibia, and allometric slopes of these four hind leg dimensions differed significantly among populations. Of these, three traits showed latitudinal variation, namely, male hind femur was stouter; female hind tibia was slenderer, and female body was smaller at lower latitudes than at higher latitudes. Hind leg sizes and shapes, as measured by principal component analysis of these four hind leg dimensions in each sex, covaried significantly between sexes, suggesting coevolutionary diversification in sexual traits. Covariation between sexes was weaker when variation in these traits with latitude was removed. These results suggest that coevolutionary diversification between male and female sexual traits is mediated by environmental conditions that vary with latitude.  相似文献   

11.
Insect walking relies on a complex interaction between the environment, body segments, muscles and the nervous system. For the stick insect in particular, previous investigations have highlighted the role of specific sensory signals in the timing of activity of central neural networks driving the individual leg joints. The objective of the current study was to relate specific sensory and neuronal mechanisms, known from experiments on reduced preparations, to the generation of the natural sequence of events forming the step cycle in a single leg. We have done this by simulating a dynamic 3D-biomechanical model of the stick insect coupled to a reduced model of the neural control system, incorporating only the mechanisms under study. The neural system sends muscle activation levels to the biomechanical system, which in turn provides correctly timed propriosensory signals back to the neural model. The first simulations were designed to test if the currently known mechanisms would be sufficient to explain the coordinated activation of the different leg muscles in the middle leg. Two experimental situations were mimicked: restricted stepping where only the coxa-trochanteral joint and the femur-tibia joint were free to move, and the unrestricted single leg movements on a friction-free surface. The first of these experimental situations is in fact similar to the preparation used in gathering much of the detailed knowledge on sensory and neuronal mechanisms. The simulations show that the mechanisms included can indeed account for the entire step cycle in both situations. The second aim was to test to what extent the same sensory and neuronal mechanisms would be adequate also for controlling the front and hind legs, despite the large differences in both leg morphology and kinematic patterns. The simulations show that front leg stepping can be generated by basically the same mechanisms while the hind leg control requires some reorganization. The simulations suggest that the influence from the femoral chordotonal organs on the network controlling levation-depression may have a reversed effect in the hind legs as compared to the middle and front legs. This, and other predictions from the model will have to be confirmed by additional experiments.  相似文献   

12.
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femur-tibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints. Accepted: 24 May 1997  相似文献   

13.
All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.  相似文献   

14.
The American cockroach has a total of 368 muscles inserting on the post-coxal segments of its legs. By using a narrow morphological definition for delimiting individual muscles, it is shown (i) that the protrochanteral musculatures (23 muscles/leg) differ from the essentially identical meso- and metatrochanteral musculatures (24 and 26 muscles/leg) in number and disposition of extensors and in having a completely different flexor composition, and (ii) that the musculatures of the more distal segments of the legs are completely serially homologous, there being 2 muscles for moving each femur, 23 for each tibia, 7 for each first tarsomere, and 5 for each of the paired pretarsal claws. In all six legs, the trochanteral and tibial musculatures each contain single slender muscles that may be acting proprioceptively to measure the angular displacements between, respectively, the coxas and trochanters, and the femurs and tibias. Neurological and phylogenetic considerations are used to demonstrate why a narrow morphological definition should be employed, and why the widely used functional definition of Snodgrass ('35) is not only fallacious on evolutionary grounds, but also leads to making erroneous conclusions regarding the manner in which insect musculature is controlled by the insect central nervous system. Finally, it is hypothesized that the physiological limitations imposed by having an open circulatory system and the problems inherent in the neural control of large muscles may have been major evolutionary factors in forcing insects to use many slender muscles to control their body movements.  相似文献   

15.
In insects, selector genes are thought to modify the development of a default, or 'ground state', appendage into a tagma-specific appendage such as a mouthpart, antenna or leg. In the best described example, Drosophila melanogaster, the primary determination of leg identity is thought to result from regulatory interactions between the Hox genes and the antennal-specifying gene homothorax. Based on RNA-interference, a functional analysis of the selector gene tiptop and the Hox gene Antennapedia in Oncopeltus fasciatus embryogenesis is presented. It is shown that, in O. fasciatus, tiptop is required for the segmentation of distal leg segments and is required to specify the identity of the leg. The distal portions of legs with reduced tiptop develop like antennae. Thus, tiptop can act as a regulatory switch that chooses between antennal and leg identity. By contrast, Antennapedia does not act as a switch between leg and antennal identity. This observation suggests a significant difference in the mechanism of leg specification between O. fasciatus and D. melanogaster. These observations also suggest a significant plasticity in the mechanism of leg specification during insect evolution that is greater than would have been expected based on strictly morphological or molecular comparisons. Finally, it is proposed that a tiptop-like activity is a likely component of an ancestral leg specification mechanism. Incorporating a tiptop-like activity into a model of the leg-specification mechanism explains several mutant phenotypes, previously described in D. melanogaster, and suggests a mechanism for the evolution of legs from a ground state.  相似文献   

16.
The presence of chelate and subchelate fore legs in Phymatinae (Hemiptera: Reduviidae), or ambush bugs, provides a unique opportunity to study the evolution of different types of raptorial legs in a closely related group of arthropods. Themonocorini have simple, possibly raptorial legs, Phymatini and Macrocephalini distinct subchelate fore legs, and the charismatic Carcinocorini are the only insects with a chelate fore leg apart from female dryinid Chysidoidea (Hymenoptera). Relationships between the four phymatine tribes are here analyzed in a cladistic framework thus permitting testable hypotheses on the evolution of raptorial legs. The presented analysis of phymatine tribal level relationships is based on a dataset comprising 11 species of Phymatinae and 54 non‐phymatine Reduviidae and Heteroptera. The molecular data set consists of ~3500 MAFFT aligned bases of 16S, 28S D2–D3, and 18S ribosomal genes. Parsimony and maximum likelihood analyses resulted in identical topologies for the ingroup with the relationships Themonocorini + (Phymatini + (Carcinocorini + Macrocephalini)) receiving high support values. Eleven morphological characters, eight of them derived from fore leg morphology, were optimized on the parsimony analysis. These optimizations indicate that the ancestral ambush bug had a simple raptorial leg; that size reduction of the tarsus, enlargement of the femur, curvature of the fore tibia, armature of tibia and femur with rows of tiny tubercles that allow for gripping of a prey insect, and the large process on the ventral surface of the femur arose in the common ancestor of Carcinocorini + Macrocephalini + Phymatini. The chelate leg in Carcinocorini is likely derived from a subchelate precursor similar to the one seen in recent Macrocephalini and may have evolved through elongation of the ventral, proximal portion of the fore femur and modification of the median process to form part of the digitus fixus. © The Willi Hennig Society 2010.  相似文献   

17.
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.  相似文献   

18.
Twenty modes of stereotyped righting motions were observed in 116 representative species of coleoptera. Methods included cine and stereocine recording with further frame by frame analysis, stereogrammetry, inverse kinematic reconstruction of joint angles, stroboscopic photography, recording of electromyograms, 3D measurements of the articulations, etc. The basic mode consists of a search phase, ending up with grasping the substrate, and a righting, overturning phase. Leg coordination within the search cycle differs from the walking cycle with respect to phasing of certain muscle groups. Search movements of all legs appear chaotic, but the tendency to move in antiphase is still present in adjacent ipsilateral and contralateral leg pairs. The system of leg coordination might be split: legs of one side might search, while contralateral legs walk, or fore and middle legs walk while hind legs search. Elaborated types of righting include somersaults with the aid of contralateral or diagonal legs, pitch on elytra, jumps with previous energy storage with the aid of unbending between thoracic segments (well-known for Elateridae), or quick folding of elytra (originally described in Histeridae). Righting in beetles is compared with righting modes known in locusts and cockroaches. Search in a righting beetle is directed dorsad, while a walking insect searches for the ground downwards. Main righting modes were schematized for possible application to robotics.  相似文献   

19.
Anisopteran leg functions change dramatically from the final larval stadium to the adult. Larvae use legs mainly for locomotion, walking, climbing, clinging, or burrowing. Adults use them for foraging and grasping mates, for perching, clinging to the vegetation, and for repelling rivals. In order to estimate the ontogenetic shift in the leg construction from the larva to the adult, this study quantitatively compared lengths of fore, mid, and hind legs and the relationships between three leg segments, femur, tibia, and tarsus, in larval and adult Anisoptera of the families Gomphidae, Aeshnidae, Cordulegastridae, Corduliidae, and Libellulidae, represented by two species each. We found that leg segment length ratio as well as ontogenetic shift in length ratios was different between families, but rather similar within the families. While little ontogenetic shift occurred in Aeshnidae, there were some modifications in Corduliidae and Libellulidae. The severest shift occurred in Gomphidae and Cordulegastridae, both having burrowing larvae. These two families form a cluster, which is in contrast to their taxonomic relationship within the Anisoptera. Cluster analysis implies that the function of larval legs is primarily responsible for grouping, whereas adult behavior or the taxonomic relationships do not explain the grouping. This result supports the previous hypothesis about the convergent functional shift of leg characters in the dragonfly ontogenesis.  相似文献   

20.
Morphological diversity of leg appendages is one of the hallmarks of developmental evolution. Limbs in insects may develop either from their embryonic prototypes or from imaginal discs harbored inside the larva. Bombyx mori (B. mori), a Lepidopteran insect, develops adult wings from larval wing imaginal discs. However, it has been debated whether the adult legs of B. mori arise from imaginal discs or from the larval legs. Here we addressed how the larval legs relate to their adult counterparts. We present the morphological landmarks during early leg development. We used expression of developmental genes like Distalless and extradenticle to mark leg primordia. Finally, we employed classical excision approach to develop a fate map of the adult leg. Excision and ablation of thoracic legs along proximo-distal axis at various times during larval development resulted in the loss of corresponding adult leg segments. Our data suggest that B. mori legs develop from larval appendages rather than leg imaginal discs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号