首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CHARMM-GUI Membrane Builder (http://www.charmm-gui.org/input/membrane), an intuitive, straightforward, web-based graphical user interface, was expanded to automate the building process of heterogeneous lipid bilayers, with or without a protein and with support for up to 32 different lipid types. The efficacy of these new features was tested by building and simulating lipid bilayers that resemble yeast membranes, composed of cholesterol, dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, palmitoyloleoylphosphatidylethanolamine, palmitoyloleoylphosphatidylamine, and palmitoyloleoylphosphatidylserine. Four membranes with varying concentrations of cholesterol and phospholipids were simulated, for a total of 170 ns at 303.15 K. Unsaturated phospholipid chain concentration had the largest influence on membrane properties, such as average lipid surface area, density profiles, deuterium order parameters, and cholesterol tilt angle. Simulations with a high concentration of unsaturated chains (73%, membraneunsat) resulted in a significant increase in lipid surface area and a decrease in deuterium order parameters, compared with membranes with a high concentration of saturated chains (60-63%, membranesat). The average tilt angle of cholesterol with respect to bilayer normal was largest, and the distribution was significantly broader for membraneunsat. Moreover, short-lived cholesterol orientations parallel to the membrane surface existed only for membraneunsat. The membranesat simulations were in a liquid-ordered state, and agree with similar experimental cholesterol-containing membranes.  相似文献   

2.
Slow diffusion of the lipids in conventional all-atom simulations of membrane systems makes it difficult to sample large rearrangements of lipids and protein-lipid interactions. Recently, Tajkhorshid and co-workers developed the highly mobile membrane-mimetic (HMMM) model with accelerated lipid motion by replacing the lipid tails with small organic molecules. The HMMM model provides accelerated lipid diffusion by one to two orders of magnitude, and is particularly useful in studying membrane-protein associations. However, building an HMMM simulation system is not easy, as it requires sophisticated treatment of the lipid tails. In this study, we have developed CHARMM-GUI HMMM Builder (http://www.charmm-gui.org/input/hmmm) to provide users with ready-to-go input files for simulating HMMM membrane systems with/without proteins. Various lipid-only and protein-lipid systems are simulated to validate the qualities of the systems generated by HMMM Builder with focus on the basic properties and advantages of the HMMM model. HMMM Builder supports all lipid types available in CHARMM-GUI and also provides a module to convert back and forth between an HMMM membrane and a full-length membrane. We expect HMMM Builder to be a useful tool in studying membrane systems with enhanced lipid diffusion.  相似文献   

3.
Anonymity protocols are employed to establish encrypted tunnels to protect the privacy of Internet users from traffic analysis attacks. However, the attackers strive to infer some traffic patterns’ characteristics (e.g. packet directions, packet sizes, inter-packet timing, etc.) in order to expose the identities of Internet users and their activities. A recent and popular traffic analysis attack is called website fingerprinting which reveals the identity of websites visited by target users. Existing work in the literature studied the website fingerprinting attack using a single web browser, namely Firefox. In this paper we propose a unified traffic analysis attack model composed of a sequence of phases that demonstrate the efficiency of website fingerprinting attack using popular web browsers under Tor (The Onion Router). In addition, we reveal the main factors that affect the accuracy of website fingerprinting attack over Tor anonymous system and using different browsers. To the best of our knowledge, no previous study uncovered such factors by deploying real-world traffic analysis attack utilizing the top five web browsers. The outcomes of the research are very relevant to Internet users (individuals/companies/governments) since they allow to assess to which extent their privacy is preserved in presence of traffic analysis attacks, in particular, website fingerprinting over different browsers. A recommendation for future research direction regarding the investigation of website fingerprinting over different scenarios is also provided.  相似文献   

4.
Hong CB  Kim YJ  Moon S  Shin YA  Cho YS  Lee JY 《BMB reports》2012,45(1):47-50
The International HapMap Project and the Human Genome Diversity Project (HGDP) provide plentiful resources on human genome information to the public. However, this kind of information is limited because of the small sample size in both databases. A Genome-Wide Association Study has been conducted with 8,842 Korean subjects as a part of the Korea Association Resource (KARE) project. In an effort to build a publicly available browsing system for genome data resulted from large scale KARE GWAS, we developed the KARE browser. This browser provides users with a large amount of single nucleotide polymorphisms (SNPs) information comprising 1.5 million SNPs from population-based cohorts of 8,842 samples. KAREBrowser was based on the generic genome browser (GBrowse), a webbased application tool developed for users to navigate and visualize the genomic features and annotations in an interactive manner. All SNP information and related functions are available at the web site http://ksnp.cdc. go.kr/karebrowser/.  相似文献   

5.
Cellular membranes can assume a number of highly dynamic shapes. Many cellular processes also require transient membrane deformations. Membrane shape is determined by the complex interactions of proteins and lipids. A number of families of proteins that directly bend membranes have been identified. Most associate transiently with membranes and deform them. These proteins work by one or more of three types of mechanisms. First, some bend membranes by inserting amphipathic domains into one of the leaflets of the bilayer; increasing the area of only one leaflet causes the membrane to bend. Second, some proteins form a rigid scaffold that deforms the underlying membrane or stabilizes an already bent membrane. Third, some proteins may deform membranes by clustering lipids or by affecting lipid ordering in membranes. Still other proteins may use novel but poorly understood mechanisms. In this review, we summarize what is known about how different families of proteins bend membranes.  相似文献   

6.
The exact positioning of the membrane in transmembrane (TM) proteins plays important functional roles. Yet, the structures of TM proteins in protein data bank (pdb) have no information about the explicit position of the membrane. Using a simple hydrophobic lipid-protein mismatch energy function and a flexible lipid/water boundary, the position of lipid bilayer for representative TM proteins in pdb have been annotated. A web server called MAPS (Membrane Annotation of Protein Structures; available at: http://www.boseinst.ernet.in/gautam/maps) has been set up that allows the user to interactively analyze membrane-protein orientations of any uploaded pdb structure with user-defined membrane flexibility parameters.  相似文献   

7.
We have built a microarray database, StressDB, for management of microarray data from our studies on stress-modulated genes in Arabidopsis. StressDB provides small user groups with a locally installable web-based relational microarray database. It has a simple and intuitive architecture and has been designed for cDNA microarray technology users. StressDB uses Windows(trade mark) 2000 as the centralized database server with Oracle(trade mark) 8i as the relational database management system. It allows users to manage microarray data and data-related biological information over the Internet using a web browser. The source-code is currently available on request from the authors and will soon be made freely available for downloading from our website athttp://arastressdb.cac.psu.edu.  相似文献   

8.
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.  相似文献   

9.
Lipid distribution and transport across cellular membranes   总被引:1,自引:0,他引:1  
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.  相似文献   

10.
A common challenge for bioinformaticians, in either academic or industry laboratory environments, is providing informatic solutions via the Internet or through a web browser. Recently, the open source community began developing tools for building and maintaining web applications for many disciplines. These content management systems (CMS) provide many of the basic needs of an informatics group, whether in a small company, a group within a larger organisation or an academic laboratory. These tools aid in managing software development, website development, document development, course development, datasets, collaborations and customers. Since many of these tools are extensible, they can be developed to support other research-specific activities, such as handling large biomedical datasets or deploying bioanalytic tools. In this review of open source website management tools, the basic features of content management systems are discussed along with commonly used open source software. Additionally, some examples of their use in biomedical research are given.  相似文献   

11.
Sanders CR  Mittendorf KF 《Biochemistry》2011,50(37):7858-7867
Membrane lipid composition can vary dramatically across the three domains of life and even within single organisms. Here we review evidence that the lipid-exposed surfaces of membrane proteins have generally evolved to maintain correct structure and function in the face of major changes in lipid composition. Such tolerance has allowed evolution to extensively remodel membrane lipid compositions during the emergence of new species without having to extensively remodel the associated membrane proteins. The tolerance of membrane proteins also permits single-cell organisms to vary their membrane lipid composition in response to their changing environments and allows dynamic and organelle-specific variations in the lipid compositions of eukaryotic cells. Membrane protein structural biology has greatly benefited from this seemingly intrinsic property of membrane proteins: the majority of structures determined to date have been characterized under model membrane conditions that little resemble those of native membranes. Nevertheless, with a few notable exceptions, most experimentally determined membrane protein structures appear, to a good approximation, to faithfully report on native structure.  相似文献   

12.
Artificial neural network model for predicting membrane protein types   总被引:5,自引:0,他引:5  
Membrane proteins can be classified among the following five types: (1) type I membrane protein. (2) type II membrane protein. (3) multipass transmembrane proteins. (4) lipid chain-anchored membrane proteins, and (5) GPI-anchored membrane proteins. T. Kohonen's self-organization model which is a typical neural network is applied for predicting the type of a given membrane protein based on its amino acid composition. As a result, the high rates of self-consistency (94.80%) and cross-validation (77.76%), and stronger fault-tolerant ability were obtained.  相似文献   

13.
A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Here we suggest, for the first time to our knowledge, a quantitative mechanism of lipid membrane bending by hydrophobic or amphipathic rodlike inclusions which simulate amphipathic α-helices—structures shown to sculpt membranes. Considering the lipid monolayer matrix as an anisotropic elastic material, we compute the intramembrane stresses and strains generated by the embedded inclusions, determine the resulting membrane shapes, and the accumulated elastic energy. We characterize the ability of an inclusion to bend membranes by an effective spontaneous curvature, and show that shallow rodlike inclusions are more effective in membrane shaping than are lipids having a high propensity for curvature. Our computations provide experimentally testable predictions on the protein amounts needed to generate intracellular membrane shapes for various insertion depths and membrane thicknesses. We also predict that the ability of N-BAR domains to produce membrane tubules in vivo can be ascribed solely to insertion of their amphipathic helices.  相似文献   

14.
Nath A  Atkins WM  Sligar SG 《Biochemistry》2007,46(8):2059-2069
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.  相似文献   

15.
细胞膜局部区域可形成富含饱和脂质、胆固醇、鞘脂的脂筏域作为其信号转导调控平台。传统实验手段在研究脂筏及其功能时受到系统复杂度高及区域结构瞬时性强等制约。近年来,分子动力学模拟技术为细胞膜的组织原则提供了重要的理论支撑,从简单的单一组分模型到多组分系统转变,最终形成了越来越多的细胞膜仿真模型。其中,粗粒化模拟由于其简化模型,可大副拓展模拟体系的复杂程度与模拟时间,在细胞膜以及蛋白质-脂质相互作用相关研究中得到了广泛应用。本文采用MARTINI粗粒化力场模拟,构建了一种含有阴离子脂质磷脂酰肌醇二磷酸(phosphatidylinositol diphosphate, PIP2)的混合膜体系。模拟结果表明,该体系在适当温度及饱和度条件下,能自发分层形成脂筏域;膜厚度、膜组分分布、膜组分流动性等多种参数均表明,脂筏结构形成且符合其结构特征;少量PIP2添加不影响分层特性且PIP2对脂筏具有显著亲和性。此外,利用该模型以跨膜信号蛋白CD3ε为例研究了脂筏域体系中蛋白质-脂质相互作用。结果表明,PIP2-CD3ε胞内区相互作用可能是脂筏招募CD3ε的驱动力,且该过程可受钙离子调控。本工作体现了粗粒化模拟在仿真膜相关研究中的巨大优势及良好应用前景。  相似文献   

16.
Abstract

Membrane proteins can be classified among the following five types: (1) type I membrane protein. (2) type II membrane protein. (3) multipass transmembrane proteins. (4) lipid chain- anchored membrane proteins, and (5) GPI-anchored membrane proteins. T. Kohonen's self-organization model which is a typical neural network is applied for predicting the type of a given membrane protein based on its amino acid composition. As a result, the high rates of self-consistency (94.80%) and cross-validation (77.76%), and stronger fault-tolerant ability were obtained.  相似文献   

17.
Membrane mimetics are essential for structural and functional studies of membrane proteins. A promising lipid-based system are phospholipid nanodiscs, where two copies of a so-called membrane scaffold protein (MSP) wrap around a patch of lipid bilayer. Consequently, the size of a nanodisc is determined by the length of the MSP. Furthermore, covalent MSP circularization was reported to improve nanodisc stability. However, a more detailed comparative analysis of the biophysical properties of circularized and linear MSP nanodiscs for their use in high-resolution NMR has not been conducted so far. Here, we analyze the membrane fluidity and temperature-dependent size variability of circularized and linear nanodiscs using a large set of analytical methods. We show that MSP circularization does not alter the membrane fluidity in nanodiscs. Further, we show that the phase transition temperature increases for circularized versions, while the cooperativity decreases. We demonstrate that circularized nanodiscs keep a constant size over a large temperature range, in contrast to their linear MSP counterparts. Due to this size stability, circularized nanodiscs are beneficial for high-resolution NMR studies of membrane proteins at elevated temperatures. Despite their slightly larger size as compared to linear nanodiscs, 3D NMR experiments of the voltage-dependent anion channel 1 (VDAC1) in circularized nanodiscs have a markedly improved spectral quality in comparison to VDAC1 incorporated into linear nanodiscs of a similar size. This study provides evidence that circularized MSP nanodiscs are a promising tool to facilitate high-resolution NMR studies of larger and challenging membrane proteins in a native lipid environment.  相似文献   

18.
Atomic force microscopy (AFM) has developed into a powerful tool in membrane biology. AFM features an outstanding signal-to-noise ratio that allows substructures on individual macromolecules to be visualized. Most recently, AFM topographs have shown the supramolecular assembly of the bacterial photosynthetic complexes in native membranes. Here, we have determined the translational and rotational degrees of freedom of the complexes in AFM images of multi-protein assemblies, in order to build realistic atomic models of supramolecular assemblies by docking high-resolution structures into the topographs. Membrane protein assemblies of megadalton size comprising several hundreds of polypeptide chains and pigments were built with Angstrom precision.  相似文献   

19.
Cai YD  Zhou GP  Chou KC 《Biophysical journal》2003,84(5):3257-3263
Membrane proteins are generally classified into the following five types: 1), type I membrane protein; 2), type II membrane protein; 3), multipass transmembrane proteins; 4), lipid chain-anchored membrane proteins; and 5), GPI-anchored membrane proteins. In this article, based on the concept of using the functional domain composition to define a protein, the Support Vector Machine algorithm is developed for predicting the membrane protein type. High success rates are obtained by both the self-consistency and jackknife tests. The current approach, complemented with the powerful covariant discriminant algorithm based on the pseudo-amino acid composition that has incorporated quasi-sequence-order effect as recently proposed by K. C. Chou (2001), may become a very useful high-throughput tool in the area of bioinformatics and proteomics.  相似文献   

20.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号