首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

2.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

3.
Dynamics and possible function of the lutein epoxide (Lx) cycle, that is, the reversible conversion of Lx to lutein (L) in the light-harvesting antennae, were investigated in leaves of tropical tree species. Photosynthetic pigments were quantified in nine Inga species and species from three other genera. In Inga , Lx levels were high in shade leaves (mostly above 20 mmol mol−1 chlorophyll) and low in sun leaves. In Virola surinamensis , both sun and shade leaves exhibited very high Lx contents (about 60 mmol mol−1 chlorophyll). In Inga marginata grown under high irradiance, Lx slowly accumulated within several days upon transfer to deep shade. When shade leaves of I. marginata were briefly exposed to the sunlight, both violaxanthin and Lx were quickly de-epoxidized. Subsequently, overnight recovery occurred only for violaxanthin, not for Lx. In such leaves, containing reduced levels of Lx and increased levels of L, chlorophyll fluorescence induction showed significantly slower reduction of the photosystem II electron acceptor, Q A, and faster formation as well as a higher level of non-photochemical quenching. The results indicate that slow Lx accumulation in Inga leaves may improve light harvesting under limiting light, while quick de-epoxidation of Lx to L in response to excess light may enhance photoprotection.  相似文献   

4.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

5.
Clones of Cryptomonas phaseolus Skuja , Cryptomonas rostratiformis ( Skuja ) Skuja in Huber-Pestalozi, and Cryptomonas undulata Gervais were isolated from the deep chlorophyll maximum near the oxic/anoxic boundary layer of the mesoeutrophic lake Schlachtensee, Germany. Different autecological features of these species were studied in batch culture experiments . Cryptomonas cf . ovata Ehrenberg and Chroomonas sp. that never dominated in the deep chlorophyll layer were also isolated from Schlachtensee to study their light-dependent growth in comparison to the deep-living species . Cryptomonas undulata, C. cf . ovata, and C. phaseolus had a very low light compensation point ( 5–7 μmol.m-2.s-1 ), whereas the growth rate of Chroomonas sp. and C. rostratiformis was positive above 16 and 24 μmol.m-2.s-1 . Cryptomonas phaseclus and Chroomonas sp. became photoinhibited above photon flux densities of 92 and 116 μmol.m-2.s-1 . Cryptomonas rostratiformis, C. cf . ovata, and C. undulata reached a maximum growth rate at a considerably higher photon flux density (198–250 μmol.m-2.s-1 ). Cryptomonas phaseolus grew fastest under light-limiting conditions . Chyptomonas phaseolus and C. undulata were best able to suruive prolonged periods of darkness . Cryptomonas phaseolus, C. rostratiformis, and C. undulata did not show any uptake of fluorescent latex beads. When labeled glucose was provided in naturally occurring concentrations, carbon uptake by C. phaseolus, C. rostratiformis, and C. undulata was negligibly small in comparison to cellular carbon content. I suggest that the adaptation to a low-light environment is an important preadaptation for the dominance of C. phaseolus and C. undulata near the freshwater chemocline .  相似文献   

6.
Abstract: The influence of prolonged water limitation on leaf gas exchange, isoprene emission, isoprene synthase activities and intercellular isoprene concentrations was investigated under standard conditions (30 °C leaf temperature and 1000 μmol photons m-2 s-1 PPFD) in greenhouse experiments with five-year-old pubescent oak ( Quercus pubescens Willd.) and four-year-old pedunculate oak ( Quercus robur L.) saplings. Net assimilation rates proved to be highly sensitive to moderate drought in both oak species, and were virtually zero at water potentials (Ψpd) below - 1.3 MPa in Q. robur and below - 2.5 MPa in Q. pubescens . The response of stomatal conductance to water stress was slightly less distinct. Isoprene emission was much more resistant to drought and declined significantly only at Ψpd below - 2 MPa in Q. robur and below - 3.5 MPa in Q. pubescens . Even during the most severe water stress, isoprene emission of drought-stressed saplings was still approximately one-third of the control in Q. robur and one-fifth in Q. pubescens . Isoprene synthase activities were virtually unaffected by drought stress. Re-watering led to partial recovery of leaf gas exchange and isoprene emission. Intercellular isoprene concentrations were remarkably enhanced in water-limited saplings of both oak species during the first half of the respective drought periods with maximum mean values up to ca. 16 μl l-1 isoprene for Q. pubescens and ca. 11 μl l-1 isoprene for pedunculate oak, supporting the hypothesis that isoprene serves as a short-term thermoprotective agent in isoprene-emitting plant species.  相似文献   

7.
Abstract. Two nonallelic, nuclear recessive mutants of Arabidopsis thaliana (L.) Heynh. which become chlorotic when grown in an atmosphere enriched to 20000 cm3 CO2 m-3 have been isolated. For one of the mutants, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum photon flux density of ca 50 μmol m-2 s-1 is required for this response. For the other mutant, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. The injurious effects of CO2 seem to be restricted to photosynthetic tissues, since root elongation and callus growth were not inhibited by a high atmospheric CO2 concentration for either mutant. Neither mutant became chlorotic in a low O2 atmosphere that suppressed photorespiration as effectively as the elevated CO2 does. Thus, the mutations do not impose a requirement for photorespiration. The possibilities that the high CO2-sensitive phenotypes are caused by an effect of CO2 in stomata, on ethylene synthesis, or on mineral uptake are discussed but are considered unlikely.  相似文献   

8.
The relationships between non‐radiative energy dissipation and the carotenoid content, especially the xanthophyll cycle components, were studied in sun and shade leaves of several plants possessing C3 ( Hedera helix and Laurus nobilis ) or C4 ( Zea mays and Sorghum bicolor ) photosynthetic pathways. Sun‐shade acclimation caused marked changes in the organisation and function of photosynthetic apparatus, including significant variation in carotenoid content and composition. The contents of zanthophyll cycle pigments were higher in sun than in shade leaves in all species, but this difference was considerably greater in C3 than in C4 plants. The proportion of photoconvertible violaxanthin, that is the amount of violaxanthin (V) which can actually be de‐epoxidised to zeaxanthin, was much greater in sun than in shade leaves. The amount of photoconvertible V was always linearly dependent on the chlorophyll a/b ratio, although the slope of the relationship varied especially between C3 and C4 species. The leaf zeaxanthin and antheraxanthin contents were correlated with non‐radiative energy dissipation in all species under different light environments. These relationships were curvilinear and variable between sun and shade leaves and between C3 and C4 species. Hence, the dissipation of excess energy does not appear to be univocally dependent on zeaxanthin content and other photoprotective mechanisms may be involved under high irradiance stress. Such mechanisms appear largely variable between C3 and C4 species according to their photosynthetic characteristics.  相似文献   

9.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

10.
Changes in anatomical organisation of the leaf, photosynthetic performance and wood formation were examined to evaluate the temporal and spatial patterns of acclimatisation of micropropagated slow-growing black mulberry ( Morus nigra L.) plantlets to the ex vitro environment. Leaf structure differentiation, the rates of net photosynthesis (Pn), transpiration (E) and stomatal conductance (gs), and secondary xylem growth were determined in the course of a 56-day acclimatisation. Differentiation of palisade parenchyma was observed 7 days after transfer. At this stage, the rates of Pn, E and gs reached maximum values, after which the rates of all three gas exchange parameters gradually decreased. The highest proportion of woody area occupied by vessels was also observed 7 days after transfer. An important feature of developing woody tissue is the difference in patterns of vessel distribution from the characteristic differentiation patterns of earlywood and latewood vessels in mature wood of ring-porous trees. Vessels with lumen areas over 3000 μm2 were only differentiated in acclimatised plantlets, whereas vessels in stems sampled on days 0 and 7 had very small lumen areas of up to 560 μm2. Full acclimatisation, observed 56 days after transfer to the ex vitro environment, was associated with the rapid growth of new in vivo formed leaves, very low rates of E and gs, and much increased secondary xylem tissue within the stem area.  相似文献   

11.
This study examines the effect of leaf age on photosynthesis, transpiration and nitrogen concentration in four deciduous (DC) and two evergreen (EG) species coexisting in a tropical dry forest of Venezuela. Leaf age was characterized on the basis of leaf chorophyll, nitrogen content, and construction and maintenance costs. The mean leaf area-based nitrogen concentration (N) in EG was about twice that in DC species. A leaf age effect was observed in both DC and EG species, with largest N concentration in mature leaves. Fractional leaf N allocation to chlorophyll was higher in the DC than in the EG species. Differences in the construction costs of leaf mass between the youngest and the oldest leaves averaged from 2.14 to 1.55 g glucose g−1 dry weight. Although variation in area-based leaf maintenance and construction costs between DC and EG species existed, they were, nevertheless, positively correlated. Individual data sets, for each species, indicated that leaf N and maximum rate of photosynthesis (Amax) were linearly related. Nitrogen use efficiency (NUE) and water use efficiency (WUE) tended to be higher in mature leaves than in expanding and old leaves. Moreover, DC species always had higher NUE than EG species. Intercellular to ambient pressures of CO2 (Pi/Pa) were related to WUE in a negative manner. Higher Pi/Pa values were observed in expanding and old leaves. Leaf age effect on photosynthesis was, therefore, due to greater decline of carbon fixation capacity by mesophyll tissue relative to the decline in stomatal conductance in youngest and oldest leaves.  相似文献   

12.
Mature leaves of shade species exhibit lower respiratory rates than those of sun species. To elucidate the mechanism underlying different respiratory rates between sun and shade species, we examined respiratory properties of leaves in Spinacia oleracea L., a sun species, and Alocasia odora (Lodd.) Spach, a shade species, with special reference to changes in the respiratory rate throughout the night. In S. oleracea , rates of both CO2 efflux and O2 uptake decreased with time during the night, whereas in A. odora both rates were virtually constant at lower levels. The rates of O2 uptake in S . oleracea increased upon addition of sucrose, and the rates attained were virtually identical throughout the night. However, the addition of an uncoupler [carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone; FCCP] did not alter the rates. In contrast, the rates of O2 uptake in A. odora were enhanced by the addition of FCCP, but not by sucrose. The concentrations of carbohydrates in the tissue decreased throughout the night in both species and the ATP/ADP ratio was always greater in A. odora. These results indicate that, in S. oleracea , the availability of respiratory substrate determines the respiratory rate, while the low respiratory rate in A. odora is ascribed to its low demand for ATP.  相似文献   

13.
Larval grayling were found along the shoreline at velocities <20 cm s-1 depths <40 cm, shear stress <2 dyn m-2 and over sand and silt. Juveniles were found in the river channel at currents of 20-40 cm s-1 depths of 40-60 cm and shear stresses of 2-4 dyn m-2, over gravel and pebbles.  相似文献   

14.
Abstract: In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol·m-2·s-1, respectively. The largest daily CO2 uptake was 1.7 g C·m-2·d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.
(Managing editor: Ya-Qin HAN)  相似文献   

15.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

16.
Leaf water potentials below threshold values result in reduced stomatal conductance (gs). Stomatal closure at low leaf water potentials may serve to protect against cavitation of xylem. Possible control of gs by leaf water potential or hydraulic conductance was tested by drying the rooting medium in four herbaceous annual species until gs was reduced and then lowering the [CO2] to determine whether gs and transpiration rate could be increased and leaf water potential decreased and whether hydraulic conductance was reduced at the resulting lower leaf water potential. In all species, low [CO2] could reverse the stomatal closure because of drying despite further reductions in leaf water potential, and the resulting lower leaf water potentials did not result in reductions in hydraulic conductance. The relative sensitivity of gs to internal [CO2] in the leaves of dry plants of each species averaged three to four times higher than in leaves of wet plants. Two species in which gs was reputed to be insensitive to [CO2] were examined to determine whether high leaf to air water vapor pressure differences (D) resulted in increased stomatal sensitivity to [CO2]. In both species, stomatal sensitivity to [CO2] was indeed negligible at low D, but increased with D, and low [CO2] partly or fully reversed closure caused by high D. In no case did low leaf water potential or low hydraulic conductance during drying of the air or the rooting medium prevent low [CO2] from increasing gs and transpiration rate.  相似文献   

17.
Gas exchange studies in two Portuguese grapevine cultivars   总被引:8,自引:0,他引:8  
Gas exchange characteristics of leaves of Vitis vinifera L. cvs Tinta Amarela and Periquita, two grapevine cultivars grown in distinct climatic regions of Portugal, were studied under natural and controlled conditions. Daily time courses of gas exchange were measured on both a hot, sunny day and a cooler, partly cloudy day. Responses of net photosynthesis to irradiance and internal partial pressure of CO2, were also obtained. A strong correlation between net photosynthesis (PN) and leaf conductance (gs) was found during the diurnal time courses of gas exchange, as well as a relatively constant internal partial pressure of CO2 (Pi), even under non-steady-state conditions. On the cloudless day, both PN and gs were lower in the afternoon than in the morning, despite similar conditions of leaf temperature, air to leaf water vapor deficit and irradiance. The response curves of net photosynthesis to internal CO2 showed linearity up to pi values of 50 Pa, possibly indicating a substantial excess of photosynthetic capacity. When measured at low partial pressures of O2 (1 kPa), PN became inhibited at high CO2 levels. Inhibition of PN at high CO2 was absent under normal levels of O2 (21 kPa). Significant differences in gas exchange characteristics were found between the two cultivars, with T. Amarela having higher rates under similar measurement conditions. In particular, the superior performance of T. Amarela at high temperatures may represent adaptation to the warmer conditions at its place of origin.  相似文献   

18.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

19.
Abstract. Carbon dioxide is known to overcome sporophytic self-incompatibility in Brassica. Elevated CO2 (30 mmol CO2 mol-1 air), supplied via a flowthrough gas system, was shown to block the formation of rejection callose in the surface stigmatic papillae of Brassica campestris var. T15 following self-pollination. Possible mechanisms by which CO2 may affect callose formation are discussed.  相似文献   

20.
The marine alga Heterosigma carterae Hulburt (Raphidophyta) was grown in N-limiting batch cultures using either nitrate or ammonium as the N source, at photon flux densities (PFDs) of 50, 200, and 350 μmol·m-2·s-1 in a 12:12 h LD cycle. Carbon content could be estimated from biovolume (μg C = 0.278 × nL; R = 0.98) but not reliably from pigment content. During exponential growth, ammonium-grown cells (in comparison with nitrate-grown cells at the same PFD) attained higher growth rates by at least 20%, contained more N, and had a lower C:N ratio, higher concentrations of intracellular free amino acids, and higher ratios of glutamine: glutamate (Gln: Glu) and asparagine: aspartate (Asn:Asp). Growth was nearly light-saturated on ammonium at 200 μmol·m-2·s-1 (cell-specific growth rate of 1.2 d-1) but probably not saturated in nitrate-grown cells at 350 μmol·m-2·s-1. PFD did not affect Gln: Glu or Asn: Asp for a given N source. These results indicate that the nitrate-growing cells were more N-stressed than those using ammonium (which in contrast were relatively C-stressed) and that this organism would show an enhanced competitive advantage against other species when supplied with a transient supply of ammonium rather than nitrate .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号