首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of fibroblast growth factor receptor-1 (FGFR-1) expressed on endothelial cells leads to cellular migration and proliferation. We have examined the role of the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk in these processes. Transient tyrosine phosphorylation of Crk in fibroblast growth factor-2-stimulated endothelial cells was dependent on the juxtamembrane tyrosine residue 463 in FGFR-1, and a Crk SH2 domain precipitated FGFR-1 via phosphorylated Tyr-463, indicating direct complex formation between Crk and FGFR-1. Furthermore, Crk SH2 and SH3 domains formed ligand-independent complexes with Shc, C3G, and the Crk-associated substrate (Cas). Tyrosine phosphorylation of C3G and Cas increased as a consequence of growth factor treatment. We examined the role of Crk in FGFR-1-mediated cellular responses by use of cells expressing chimeric platelet-derived growth factor receptor-alpha/FGFR-1 (alphaR/FR) wild type and mutant Y463F receptors. The kinase activity of alphaR/FR Y463F was intact, but both Crk and the adaptor FRS-2 were no longer tyrosine-phosphorylated in the mutant cells. Both wild type and mutant receptor cells migrated efficiently, whereas cells expressing the mutant alphaR/FR Y463F failed to proliferate and Erk2 and Jun kinase activities were suppressed in these cells. In wild type alphaR/FR cells transiently expressing an SH2 domain mutant of Crk, Erk and Jun kinase activities as well as DNA synthesis were attenuated. Our data indicate that Crk participates in signaling complexes downstream of FGFR-1, which propagate mitogenic signals.  相似文献   

2.
Vascular endothelial growth factor (VEGF)-mediated inflammation requires the synthesis of acute platelet-activating factor (PAF) by endothelial cells (ECs). We previously reported that VEGF-mediated PAF synthesis involves the activation of the homodimeric tyrosine kinase receptor VEGFR-2/R-2, leading to the recruitment of p38 and p42/p44 mitogen-activated protein kinases (MAPKs) and activation of secreted group V phospholipase A? (sPLA?-V). We have also reported that VEGF-A???-mediated prostacyclin (PGI?) synthesis requires VEGFR-1/R-2 heterodimeric receptor activation. Selective activation of VEGF receptors can coordinate the synthesis of pro-PAF and anti-PGI? inflammatory factors. It is unknown which VEGFR-2 tyrosine phosphorylation site(s) contribute(s) to PAF synthesis. Bovine aortic endothelial cells (BAECs) were transfected with pcDNA vectors encoding for native VEGF receptor-2 (VEGFR-2) cDNA or VEGFR-2 cDNA containing tyrosine phosphorylation sites mutated into phenylalanine residues (Y801F, Y1059F, Y1175F, Y1214F); an empty pcDNA vector was used as a negative control. Treatment of pcDNA-transfected BAECs with VEGF (10?? mol/L) for 15 min increased PAF synthesis by 180%. In BAECs transfected with pcDNA vectors encoding mutated Y801F, Y1059F, Y1175F, or Y1214F VEGFR-2 cDNA, we observed a marked reduction of VEGF-mediated PAF synthesis by 38%, 46%, 69%, and 31%, respectively, compared with BAECs transfected with pcDNA vector encoding VEGFR-2 cDNA. Our data provide a novel insight as to the mechanisms by which VEGF promotes PAF synthesis.  相似文献   

3.
Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.  相似文献   

4.
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).  相似文献   

5.
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis.  相似文献   

6.
FLK-1/vascular endothelial growth factor receptor 2 (VEGFR-2) is one of the receptors for VEGF. In this study we examined the effect of cell density on activation of VEGFR-2. VEGF induces only very slight tyrosine phosphorylation of VEGFR-2 in confluent (95-100% confluent) pig aortic endothelial (PAE) cells. In contrast, robust VEGF-dependent tyrosine phosphorylation of VEGFR-2 was observed in cells plated in sparse culture conditions (60-65% confluent). A similar cell density-dependent phenomenon was observed in different endothelial cells but not in NIH-3T3 fibroblast cells expressing VEGFR-2. Stimulating cells with high concentrations of VEGF or replacing the extracellular domain of VEGFR-2 with that of the colony-stimulating factor 1 receptor did not alleviate the sensitivity of VEGFR-2 to cell density, indicating that the confluent cells were probably not secreting an antagonist to VEGF. Furthermore, in PAE cells, ectopically introduced platelet-derived growth factor alpha receptor could be activated at both high and low cell density conditions, indicating that the density effect was not universal for all receptor tyrosine kinases expressed in endothelial cells. In addition to lowering the density of cells, removing divalent cations from the medium of confluent cells potentiated VEGFR-2 phosphorylation in response to VEGF. These findings suggested that cell-cell contact may be playing a role in regulating the activation of VEGFR-2. To this end, pretreatment of confluent PAE cells with a neutralizing anti-cadherin-5 antibody potentiated the response of VEGFR-2 to VEGF. Our data demonstrate that endothelial cell density plays a critical role in regulating VEGFR-2 activity, and that the underlying mechanism appears to involve cadherin-5.  相似文献   

7.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

8.
Vascular endothelial growth factor-mediated angiogenic signal transduction relay is achieved by coordinated induction of endothelial cell proliferation, migration, and differentiation. These complex cellular processes are most likely controlled by activation of both cooperative and antagonistic signals by vascular endothelial growth factor receptors (VEGFRs). Here, we investigated the contribution of tyrosine-phosphorylated residues of VEGFR-2/fetal liver kinase-1 to endothelial cell proliferation and differentiation and activation of signaling proteins. Mutation of tyrosine 1006 of VEGFR-2 to phenylalanine severely impaired the ability of this receptor to stimulate endothelial cell differentiation and tubulogenesis. Paradoxically, the mutant receptor stimulated endothelial cell proliferation far better than the wild-type receptor. Further analysis showed that tyrosine 1006 is responsible for phospholipase Cgamma1 (PLCgamma1) activation and intracellular calcium release in endothelial cells. Activation of PLCgamma1 was selectively mediated by tyrosine 1006. Mutation of tyrosines 799, 820, 949, 994, 1080, 1173, and 1221 had no measurable effect on the ability of VEGFR-2 to stimulate PLCgamma1 activation. Association of VEGFR-2 with PLCgamma1 was mainly established between tyrosine 1006 and the C-terminal SH2 domain of PLCgamma1 in vitro and in vivo. Taken together, the results indicate that phosphorylation of tyrosine 1006 is essential for VEGFR-2-mediated PLCgamma1 activation, calcium flux, and cell differentiation. More importantly, VEGFR-2-mediated endothelial cell proliferation is inversely correlated with the ability of VEGFR-2 to associate with and activate PLCgamma1.  相似文献   

9.
Vascular endothelial growth factor (VEGF) provokes angiogenesis in vivo and stimulates growth and differentiation of endothelial cells in vitro. Although VEGF receptor-1 (VEGFR-1) and VEGFR-2 are known to be high affinity receptors for VEGF, it is not clear which of the VEGFRs are responsible for the transmission of the diverse biological responses of VEGF. For this purpose we have constructed a chimeric receptor for VEGFR-1 (CTR) and VEGFR-2 (CKR) in which the extracellular domain of each receptor was replaced with the extracellular domain of human colony-stimulating factor-1 receptor (CSF-1R), and these receptors were expressed in pig aortic endothelial (PAE) cells. We show that CKR individually expressed in PAE cells is readily tyrosine-phosphorylated in vivo, autophosphorylated in vitro, and stimulates cell proliferation in a CSF-1-dependent manner. In contrast, CTR individually expressed in PAE cells showed no significant in vivo, in vitro tyrosine phosphorylation and cell growth in response to CSF-1 stimulation. The kinase activity of CKR was essential for its biological activity, since mutation of lysine 866 to arginine abolished its in vivo, in vitro tyrosine phosphorylation and mitogenic signals. Remarkably, activation of CTR repressed CKR-mediated mitogen-activate protein kinase activation and cell proliferation. Similar effects were observed for VEGFR-2 co-expressed with VEGFR-1. Collectively, these findings demonstrate that VEGFR-2 activation plays a positive role in angiogenesis by promoting endothelial cell proliferation. In contrast, activation of VEGFR-1 plays a stationary role in angiogenesis by antagonizing VEGFR-2 responses.  相似文献   

10.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

11.
c-Fes plays pivotal roles in angiogenic cellular responses of endothelial cells. Here we examined the role of c-Fes in vascular endothelial growth factor-A (VEGF-A)-mediated signaling pathways in endothelial cells. We introduced either wild-type or kinase-inactive c-Fes in porcine aortic endothelial (PAE) cell lines, which endogenously express VEGF receptor (VEGFR)-1, and PAE cells ectopically expressing VEGFR-2 (denoted KDR/PAE cells) and generated stable cell lines. VEGF-A induced autophosphorylation of c-Fes only in KDR/PAE cells, suggesting that VEGFR-2 was required for its activation. Expression of kinase-inactive c-Fes failed to demonstrate dominant negative effect on VEGF-A-induced chemotaxis and capillary morphogenesis. Phosphoinositide 3-kinase (PI3-kinase) was activated in KDR/PAE cells and c-Fes contributed to this process in a kinase activity-dependent manner. However, VEGFR-2, insulin receptor substrate-1, and c-Src were also involved in VEGF-A-induced activation of PI3-kinase, resulting in the compensation in cells expressing kinase-inactive c-Fes. Interestingly, overexpression of wild-type c-Fes in PAE cells induced VEGF-A-independent capillary morphogenesis. Considered collectively, VEGF-A activated PI3-kinase partly through c-Fes and increase in c-Fes kinase activity enhanced capillary morphogenesis by yet unknown signaling pathways.  相似文献   

12.
Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.  相似文献   

13.
Vascular endothelial growth factor (VEGF)-stimulated nitric oxide (NO) release from endothelial cells is mediated through the activation of VEGF receptor-2 (VEGFR-2). Herein, we have attempted to determine which autophosphorylated tyrosine residue on the VEGFR-2 is essential for VEGF-mediated endothelial nitric-oxide synthase (eNOS) activation and NO production from endothelial cells. Tyrosine residues 801, 1175, and 1214 of the VEGFR-2 were mutated to phenylalanine, and the mutated receptors were analyzed for their ability to stimulate NO production. We show, both in COS-7 cells cotransfected with the VEGFR-2 mutants and eNOS and in bovine aortic endothelial cells, that the Y801F-VEGFR-2 mutant is unable to stimulate NO synthesis and eNOS activation in contrast to the wild type, Y1175F-VEGFR-2, and Y1214F-VEGFR-2. However, the Y801F mutant retains the capacity to activate phospholipase C-gamma in contrast to the Y1175F-VEGFR-2. Interestingly, the Y801F-VEGFR-2, in contrast to the wild type receptor, does not fully activate phosphatidylinositol 3-kinase or recruit the p85 subunit upon receptor activation. This results in a complete incapacity of the Y801F-VEGFR-2 to stimulate Akt activation and eNOS phosphorylation on serine 1179 in endothelial cells. In addition, constitutive activation of Akt or a phosphomimetic mutant of eNOS (S1179D) fully rescues the inability of the Y801F-VEGFR-2 to induce NO release. Finally, we generated an antibody that specifically recognizes the phosphorylated form of tyrosine 801 of the VEGFR-2 and demonstrate that this residue is actively phosphorylated in response to VEGF stimulation of endothelial cells. We thus conclude that autophosphorylation of tyrosine residue 801 of the VEGFR-2 is essential for VEGF-stimulated NO production from endothelial cells, and this is primarily accomplished via the activation of phosphatidylinositol 3-kinase and Akt signaling to eNOS.  相似文献   

14.
The sulfated regions in heparan sulfate and heparin are known to affect fibroblast growth factor (FGF) function. We have studied the mechanism whereby heparin directs FGF-2-induced FGF receptor-1 (FGFR-1) signal transduction. FGF-2 alone stimulated maximal phosphorylation of Src homology domain 2 tyrosine phosphatase (SHP-2) and the adaptor molecule Crk, in heparan sulfate-deficient Chinese hamster ovary (CHO) 677 cells expressing FGFR-1. In contrast, for phospholipase Cgamma(1) (PLCgamma(1)) and the adaptor molecule Shb to be maximally tyrosine-phosphorylated, cells had to be stimulated with both FGF-2 and heparin (100 ng/ml). Tyrosine residues 463 in the juxtamembrane domain and 766 in the C-terminal tail in FGFR-1 are known to bind Crk and PLCgamma(1), respectively. Analysis of tryptic phosphopeptide maps of FGFR-1 from cells stimulated with FGF-2 alone and FGF-2 together with heparin showed that FGF-2 alone stimulated a several-fold increase in tyrosine 463 in the juxtamembrane domain. In contrast, heparin had to be included in order for tyrosine 766 to be phosphorylated to the same fold level. Our data imply that tyrosine 463 is phosphorylated and able to transduce signals in response to FGF-2 treatment alone; furthermore, we suggest that FGFR-1 dimerization/kinase activation is stabilized by heparin.  相似文献   

15.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

16.
Two novel sites of autophosphorylation were localized to the C-terminal tail of the PDGF beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants in which Tyr1009, Tyr1021 or both were replaced with phenylalanine residues, were expressed in porcine aortic endothelial (PAE) cells. These mutants were similar to the wild type receptor with regard to protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. However, both the Y1009F and Y1021F mutants showed a decreased ability to mediate association with and the tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) compared to the wild type PDGF beta-receptor; in the case of the Y1009F/Y1021F double mutant, no association or phosphorylation of PLC-gamma could be detected. These data show that tyrosine phosphorylation of PLC-gamma is dependent on autophosphorylation of the PDGF beta-receptor at Tyr1009 and Tyr1021.  相似文献   

17.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

18.
KDR/Flk-1 tyrosine kinase, one of the two vascular endothelial growth factor (VEGF) receptors, induces mitogenesis and differentiation of vascular endothelial cells. To understand the mechanisms underlying the VEGF-A-induced growth signaling pathway, we constructed a series of human KDR mutants and examined their biological properties. An in vitro kinase assay and subsequent tryptic peptide mapping revealed that Y1175 and Y1214 are the two major VEGF-A-dependent autophosphorylation sites. Using an antibody highly specific to the phosphoY1175 region, we demonstrated that Y1175 is phosphorylated rapidly in vivo in primary endothelial cells. When the mutated KDRs were introduced into the endothelial cell lines by adenoviral vectors, only the Y1175F KDR, Tyr1175 to phenylalanine mutant, lost the ability to tyrosine phosphorylate phospholipase C-gamma and, significantly, reduced MAP kinase phosphorylation and DNA synthesis in response to VEGF-A. Furthermore, primary endothelial cells microinjected with anti-phosphoY1175 antibody clearly decreased DNA synthesis compared with control cells. These findings strongly suggest that autophosphorylation of Y1175 on KDR is crucial for endothelial cell proliferation, and that this region is a new target for anti-angiogenic reagents.  相似文献   

19.
Growth and remodeling of lymphatic vasculature occur during development and during various pathologic states. A major stimulus for this process is the unique lymphatic vascular endothelial growth factor-C (VEGF-C). Other endothelial growth factors, such as fibroblast growth factor-2 (FGF-2) or VEGF-A, may also contribute. Heparan sulfate is a linear sulfated polysaccharide that facilitates binding and action of some vascular growth factors such as FGF-2 and VEGF-A. However, a direct role for heparan sulfate in lymphatic endothelial growth and sprouting responses, including those mediated by VEGF-C, remains to be examined. We demonstrate that VEGF-C binds to heparan sulfate purified from primary lymphatic endothelia, and activation of lymphatic endothelial Erk1/2 in response to VEGF-C is reduced by interference with heparin or pretreatment of cells with heparinase, which destroys heparan sulfate. Such treatment also inhibited phosphorylation of the major VEGF-C receptor VEGFR-3 upon VEGF-C stimulation. Silencing lymphatic heparan sulfate chain biosynthesis inhibited VEGF-C-mediated Erk1/2 activation and abrogated VEGFR-3 receptor-dependent binding of VEGF-C to the lymphatic endothelial surface. These findings prompted targeting of lymphatic N-deacetylase/N-sulfotransferase-1 (Ndst1), a major sulfate-modifying heparan sulfate biosynthetic enzyme. VEGF-C-mediated Erk1/2 phosphorylation was inhibited in Ndst1-silenced lymphatic endothelia, and scratch-assay responses to VEGF-C and FGF-2 were reduced in Ndst1-deficient cells. In addition, lymphatic Ndst1 deficiency abrogated cell-based growth and proliferation responses to VEGF-C. In other studies, lymphatic endothelia cultured ex vivo from Ndst1 gene-targeted mice demonstrated reduced VEGF-C- and FGF-2-mediated sprouting in collagen matrix. Lymphatic heparan sulfate may represent a novel molecular target for therapeutic intervention.  相似文献   

20.
Hepatocyte growth factor (HGF) elicits pleiotropic effects on various types of cells through the c-Met receptor tyrosine kinase. However, the mechanisms underlying the diverse responses of cells remain unknown. We show here that HGF promoted chemokinesis of rat primary astrocytes through the activation of phosphatidylinositol 3 (PI3)-kinase without any influence on mitogenesis of the cells. Under the same condition, phospholipase Cgamma1 (PLCgamma1), which is another signal mediator of c-Met, was not tyrosine-phosphorylated during HGF stimulation. However, treatment of the cells with orthovanadate, a tyrosine phosphatase inhibitor, restored the HGF-induced tyrosine phosphorylation of PLCgamma1. A tyrosine phosphatase, SHP-1, was associated with both PI3-kinase and PLCgamma1 before HGF stimulation, but it was dissociated only from PI3-kinase after the stimulation. Furthermore, transfectants of catalytically inactive mutant of SHP-1 showed tyrosine phosphorylation of PLCgamma1 and mitogenic responses to HGF, and the mitogenic response was blocked with, an inhibitor of phosphatidylinositol-specific PLC, and calphostin C, an inhibitor of protein kinase C downstream of the PLCgamma1. These results indicate that PLCgamma1 is selectively prevented from being a signal mediator by constitutive association of SHP-1, and that this selective inhibition of PLCgamma1 may determine the cellular response of astrocytes to HGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号