首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naloxone is a specific competitive antagonist of morphine, acting on opiate receptors, located on neuronal membranes. The effects of in vivo administration of naloxone on energy-consuming non-mitochondrial ATP-ases were studied in two different types of synaptic plasma membranes from rat cerebral cortex, known to contain a high density of opiate receptors. The enzyme activities of Na+, K+-ATP-ase, Ca2+, Mg2+-ATP-ase and Mg2+-ATP-ase and of acetylcholinesterase (AChE) were evaluated on synaptic plasma membranes obtained from control and treated animals with effective dose of naloxone (12g · kg–1 i.m. 30 minutes). In control (vehicle-treated) animals specific enzyme activities assayed on these two types of synaptic plasma membranes are different, being higher on synaptic plasma membranes of II type than of I type, because the first fraction is more enriched in synaptic plasma membranes. The acute treatment with naloxone produced a significant decrease in Ca2+,Mg2+-ATP-ase activity and an increase in AChE activity, only in synaptic plasma membranes of II type. The decrease of Ca2+,Mg2+-ATP-ase enzymatic activity and the increased AChE activity are related to the interference of the drug on Ca2+ homeostasis in synaptosoplasm, that leads to the activation of calcium-dependent processes, i.e. the extrusion of neurotransmitter. These findings give further evidence that pharmacodynamic characteristics of naloxone are also related to increase [Ca2+] i , interfering with enzyme systems (Ca2+,Mg2+-ATP-ase) and that this drug increases acetylcholine catabolism in synaptic plasma membranes of cerebral cortex.  相似文献   

2.
The maximum rates (V max) of some enzymatic activities related to energy consumption (ATP-ases) were evaluated in two types of synaptic plasma membranes (SPM) isolated from cerebral cortex of rats subjected to in vivo treatment with l-acetylcarnitine at two different doses (30 and 60 mg kg−1 i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na+, K+, Mg2+-ATP-ase; ouabain insensitive Mg2+-ATP-ase; Na+, K+-ATP-ase; direct Mg2+-ATP-ase; Ca2+, Mg2+-ATP-ase; Low- and High-affinity Ca2+-ATP-ase. Sub-chronic treatment with l-acetylcarnitine increased Na+, K+-ATP-ase activity on SPM 2 and Ca2+, Mg2+-ATP-ase activity on both SPM fractions. These results suggest (1) that the sensitivity to drug treatment is different between the two populations of SPM, confirming the micro-heterogeneity of these sub-fractions, probably originating from different types of synapses, (2) the specificity of the molecular site of action of the drug on SPM and (3) its interference on ion homeostasis at synaptic level.  相似文献   

3.
Energy-using non-mitochondrial ATPases were assayed in rat cerebral cortex synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The following enzyme activities were evaluated: Na+, K+-ATPase; high- and low-affinity Ca2+-ATPase; basal Mg2+-ATPase; Ca2+, Mg2+-ATPase. The evaluations were performed after four week-treatment with saline [controls] or -adrenergic agents (-yohimbine, clonidine), energymetabolism interfering compound (theniloxazine), and oxygen-partial pressure increasing agent (almitrine), in order to define the plasticity and the selective changes in individual ATPases. In rat cerebral cortex, the enzyme adaptation to four-week-treatment with -yohimbine or clonidine was characterized by increase in both high- and low-affinity Ca2+-ATPase activities. The action involves the enzyme form located in the synaptic plasma membranes. The enzyme adaptation to the subchronic treatments with theniloxazine or almitrine was characterized by increase in Na+, K+-ATPase or Mg2+-ATPase activities, respectively. The action involves the enzymatic forms located in the synaptic plasma membranes. Thus, the pharmacodynamic effects of the agents tested should also be related to the changes induced in the activity of some specific synaptosomal nonmitochondrial ATPases.  相似文献   

4.
The chronic administration of disulfiram (DS) to rats resulted in significant decrease of synaptosomal Ca2+, Mg2+-ATPase activity. In vitro studies indicated that DS (ID50=20 M) produced a dose-dependent inhibition of Ca2+, Mg2+-ATPase. However, diethyldithio-carbamate, a metabolite of DS, failed to modify Ca2+, Mg2+-ATPase activity, implying that the decrease in ATPase activity in DS administered rats was due to the effect of parent compound. The DS-mediated inhibition (48%) of ATPase activity was comparable with a similar degree of inhibition (49%) achieved by treating the synaptosomal membranes with N-ethylmaleimide (ID50=20 M) in vitro. Furthermore, the inhibition by DS was neither altered by washing the membranes with EGTA nor reversed by treatment with sulfhydryl reagents such as GSH or dithiothreitol. About 74% and 68% decrease of synaptosomal Ca2+, Mg2+-ATPase specific activity was observed when treated with DS (30 M) and EGTA (100 M) respectively. The remaining 25–30% of total activity is suggested to be of Mg2+-dependent ATPase activity. This indicates that both these drugs may act on a common target, calmodulin component that represents 70–75% of total Ca2+, Mg2+-ATPase activity. Therefore, DS-mediated modulation of synaptosomal Ca2+, Mg2+-ATPase activity could affect its function of maintaining intracellular Ca2+ concentration. This could contribute to the deleterious effects on CNS.  相似文献   

5.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

6.
Inositol 1,4,5-trisphosphate (IP3) was found to release Ca2+ from presynaptic nerve endings (synaptosomes) made permeable with saponin. ATP-dependent Ca2+ uptake was carried out until equilibrium was reached. Addition of IP3 produced a rapid release of Ca2+, which was complete within 60 sec, followed by Ca2+ reaccumulation to the original level in 5–7 min. Cholinergic receptor stimulation with muscarine also produced a similar Ca2+ release from synaptic endoplasmic reticulum. Ca2+ release by IP3 was not detectable in the absence of the mitochondrial inhibitors oligomycin or sodium azide. Reaccumulation of Ca2+ was prevented by the presence of vanadate, a potent inhibitor of Ca2+/Mg2+ ATPase. Half maximal and near complete release of Ca2+ took place at 0.4 M and 3 M IP3 concentrations, respectively. These studies demonstrate for the first time IP3 mobilization of Ca2+ from endoplasmic reticulum within synaptic plasma membranes.  相似文献   

7.
The phospholipid requirement for Ca2+-stimulated, Mg2+-dependent ATP hydrolysis (Ca2+/Mg2+-ATPase) and Mg2+-stimulated ATP hydrolysis (Mg2+-ATPase) in rat brain synaptosomal membranes was studied employing partial delipidation of the membranes with phospholipase A2 (Hog pancreas), phospholipase C (Bacillus cereus) and phospholipase D (cabbage). Treatment with phospholipase A2 caused an increase in the activities of both Ca2+/Mg2+-ATPase and Mg2+-ATPase whereas with phospholipase C treatment both the enzyme activities were inhibited. Phospholipase D treatment had no effect on Ca2+/Mg2+-ATPase but Mg2+-ATPase activity was inhibited. Inhibition of Mg2+-ATPase activity after phospholipase C treatment was relieved with the addition of phosphatidylinositol-4,5-bisphosphate (PIP2) and to a lesser extent with phosphatidylinositol-4-phosphate (PIP) and phosphatidylcholine (PC). Phosphatidylserine (PS), phosphatidic acid (PA), PIP and PIP2 brought about the reactivation of Ca2+/Mg2+-ATPase. Phosphatidylinositol (PI) and PA inhibited Mg2+-ATPase activity.K ms for Ca2+ (0.47 M) and Mg2+ (60 M) of the enzyme were found to be unaffected after treatment with the phospholipases.  相似文献   

8.
The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2O2 (9010 or 91.58.5) for four weeks]. The activities of Na+, K+-ATPase, low- and high-affinity Ca2+-ATPase, Mg2+-ATPase, and Ca2+, Mg2+-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or -adrenergic agents (-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+, K+-ATPase, Ca2+,Mg2+-ATPase, and high-affinity Ca2+-ATPase, concomitant with a modification in the activity of Mg2+-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles.  相似文献   

9.
We have investigated the possible role of plasma membrane oxidoreductases in the Ca2+ export mechanisms in rat brain synaptic membranes. Ca2+ efflux in nerve terminals is controlled both by a high-affinity/low capacity Mg-dependent ATP-stimulated Ca2+ pump and by a low affinity/high capacity ATP-independent Na+-Ca2+ exchanger. Both Ca2+ efflux mechanisms were strongly inhibited by pyridine nucleotides, in the order NADP>NAD>NADPH>NADH with IC50 values of ca. 10 mM for NADP and ca. 3 mM for the other agents in the case of the ATP-driven Ca2+ pump and with IC50 values between 8 and 10 mM for the Na+-Ca2+ exchanger. Oxidizing agents such as DCIP and ferricyanide inhibited the ATP-driven Ca2+ efflux mechanism but not the Na+-Ca2+ exchanger. In addition, full activation of plasma membrane oxidoreductases requires both an acceptor and an electron donor; therefore the combined effects of both substrates added together were also studied. When plasma membrane oxidoreductases of the synaptic plasma membrane were activated in the presence of both NADH (or NADPH) and DCIP or ferricyanide, the inhibition of the ATP-driven Ca2+ pump was optimal; by contrast, the pyridine nucleotide-mediated inhibition of the Na+-Ca2+ exchanger was partially released when both substrates of the plasma membrane oxidoreductases were present together. Furthermore, the activation of plasma membrane oxidoreductases also strongly inhibited intracellular protein phosphorylation in intact synaptosomes, mediated by eithercAMP-dependent protein kinase, Ca2+ calmodulin-dependent protein kinases, or protein kinase C.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - SDS sodium dodecyl sulfate - EGTA ethylenglycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - DCIP dichlorophenol-indophenol  相似文献   

10.
The effects of 1 and 2 receptor ligands on Ca2+/Mg2+-ATPase have been studied using synaptosomal plasma membranes isolated from rat brain cortex. Both phenylephrine and clonidine inhibited Ca2+/Mg2+-ATPase, in a concentration-dependent fashion. IC50 values for half-maximal inhibition for phenylephrine and clonidine were 29 M and 18 M, respectively. The inhibitory effect of phenylephrine was reversed by the alpha antagonist prazosin while yohimbine and rauwolscine reversed the inhibition of enzyme activity by clonidine. The two antagonist subtypes were effective only against the respective agonist subtypes, demonstrating distinct subtype preferences. Analysis of the kinetics of enzyme inhibition indicate both agonists to be noncompetitive. Some evidence suggests that yohimbine may exhibit mixed agonist/antagonist properties which depend on [Ca2+]. The present study provides biochemical evidence to support auto receptor adrenergic receptor regulation of neurotransmitter release.  相似文献   

11.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   

12.
Summary ATP-dependent45Ca2+ uptake was investigated in purified plasma membranes from rat pancreatic acinar cells. Plasma membranes were purified by four subsequent precipitations with MgCl2 and characterized by marker enzyme distribution. When compared to the total homogenate, typical marker enzymes for the plasma membrane, (Na+,K+)-ATPase, basal adenylate cyclase and CCK-OP-stimulated adenylate cyclase were enriched by 43-fold, 44-fold, and 45-fold, respectively. The marker for the rough endoplasmic reticulum was decreased by fourfold compared to the total homogenate. Comparing plasma membranes with rough endoplasmic reticulum, Ca2+ uptake was maximal with 10 and 2 mol/liter free Ca2+, and half-maximal with 0.9 and 0.5 mol/liter free Ca2+. It was maximal at 3 and 0.2 mmol/liter free Mg2+ concentration, at an ATP concentration of 5 and 1 mmol/liter, respectively, and at pH 7 for both preparations. When Mg2+ was replaced by Mn2+ or Zn2+ ATP-dependent Ca2+ uptake was 63 and 11%, respectively, in plasma membranes; in rough endoplasmic reticulum only Mn2+ could replace Mg2+ for Ca2+ uptake by 20%. Other divalent cations such as Ba2+ and Sr2+ could not replace Mg2+ in Ca2+ uptake. Ca2+ uptake into plasma membranes was not enhanced by oxalate in contrast to Ca2+ uptake in rough endoplasmic reticulum which was stimulated by 7.3-fold. Both plasma membranes and rough endoplasmic reticulum showed cation and anion dependencies of Ca2+ uptake. The sequence was K+>Rb+>Na+>Li+>choline+ in plasma membranes and Rb+K+Na+>Li+>choline+ for rough endoplasmic reticulum. The anion sequence was ClBrI>SCN>NO 3 >isethionate >cyclamate>gluconate>SO 4 2– glutarate and Cl>Br>gluconate>SO 4 2– >NO 3 >I>cyclamateSCN, respectively. Ca2+ uptake into plasma membranes appeared to be electrogenic since it was stimulated by an inside-negative K+ and SCN diffusion potential and inhibited by an inside-positive diffusion potential. Ca2+ uptake into rough endoplasmic reticulum was not affected by diffusion potentials. We assume that the Ca2+ transport mechanism in plasma membranes as characterized in this study represents the extrusion system for Ca2+ from the cell that might be involved in the regulation of the cytosolic Ca2+ level.  相似文献   

13.
The interaction of various hormones and regucalcin on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of epinephrine (10–6–10–4 M), and insulin (10–8–10 M) in the reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity, while the enzyme activity was decreased significantly by calcitonin, (3×10–8–3×10–6 M). These hormonal effects, except for calcitonin, were clearly inhibited by the presence of vanadate (10–4 M) which can inhibit the Ca2+-dependent phosphorylation of enzyme. Meanwhile, regucalcin (0.25 and 0.50 M), isolated from rat liver cytosol, elevated significantly (Ca2+–Mg2+)-ATPase activity in the plasma membranes, although this elevation was not inhibited by vanadate (10–4 M). the epinephrine (10–5 M) or phenylephrine (10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was disappeared in the presence of regucalcin; in this case the effect of regucalcin was also weakened. However, the inhibitory effect of calcitonin (3×10–6 M) was not weakened by the presence of regucalcin (0.5 M). Moreover, GTP (10–5 and 10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was not seen in the presence of regucalcin (0.25 M). The present finding suggests that the activating mechanism of regucalcin on (Ca2+–Mg2+)-ATPase is not involved on GTP-binding protein which modulates the receptor-mediated hormonal effect in rat liver plasma membranes.  相似文献   

14.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

15.
The ATP dependent Ca2+ uptake of platelet vesicles was inhibited by the two hydrophobic drugs trifluoperazine (TFP) and propranolol (PROP). Inhibition was significantly lowered when Pi was used instead of oxalate as a precipitant agent. When the ATPase ligands substrate (Mg2+ and Pi) were absent of the efflux medium, a slow release of Ca2+ which did not couple with ATP synthesis (passive Ca2+ efflux) was observed. Both, TFP and PROP enhanced the passive Ca2+ efflux. This enhanced efflux was partially inhibited only when Mg2+ and Pi were added together to the efflux reaction media, but it was not affected by spermidine, ruthenium red or thapsigargin (TG). The Ca2+ ionophores A23187 and ionomycin, also enhanced passive Ca2+ efflux. However, in this case, Ca2+ efflux was inhibited just by inclusion of Mg2+ to the medium. Ca2+ efflux promoted by Triton X-100 was not affected by either Mg2+ or Pi, included together or separately into the efflux medium. The ATP Pi measured in the presence of Triton X-100 and millimolar Ca2+ concentrations was inhibited by both TFP and PROP, but not by Ca2+ ionophores up to 4 M. The data suggest that the observed enhancement of passive Ca2+ efflux promoted by TFP and PROP could be attributed to a direct effect of these drugs over the platelet Ca2+ pump isoforms (Sarco Endoplasmic Reticulum Calcium ATPase, SERCA2b and SERCA3) themselves, as it was reported for the sarcoplasmic reticulum Ca2+ ATPase (SERCA1).  相似文献   

16.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

17.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

18.
The effects of extracellular Mg2+ on both dynamic changes of [Ca2+]i and apoptosis rate were analysed. The consequences of spatial and temporal dynamic changes of intracellular Ca2+ on apoptosis, in thapsigargin- and the calcium-ionophore 4BrA23187-treated MCF7 cells were first determined. Both 4BrA23187 and thapsigargin induced an instant increase of intracellular Ca2+ concentrations ([Ca2+]i) which remained quite elevated (> 150 nM) and lasted for several hours. [Ca2+]i increases were equivalent in the cytosol and the nucleus. The treatments that induced apoptosis in MCF7 cells were systematically associated with high and sustained [Ca2+]i (150 nM) for several hours. The initial [Ca2+]i increase was not determinant in the events triggering apoptosis. Thapsigargin-mediated apoptosis and [Ca2+]i rise were abrogated when cells were pretreated with the calcium chelator BAPTA. The role of the extracellular Mg2+ concentration has been studied in thapsigargin treated cells. High (10 mM) extracellular Mg2+, caused an increase in basal [Mg2+]i from 0.8 ± 0.3 to 1.6 ± 0.5 mM. As compared to 1.4 mM extracellular Mg2+, 1 M thapsigargin induces, in 10 mM Mg2+, a reduced percentage from 22 to 11% of fragmented nuclei, a lower sustained [Ca2+]i and a lower Ca2+ influx through the plasma membrane. In conclusion, the cell death induced by thapsigargin was dependent on high and sustained [Ca2+]i which was inhibited by high extracellular and intracellular Mg2+.  相似文献   

19.
In order to examine the role of phospholipids in the activation of membrane bound Ca2+/Mg2+ ATPase, the activities of Ca2+ ATPase and Mg2+ ATPase were studied in heart sarcolemma after treatments with phospholipases A, C and D. The Mg2+ ATPase activity was decreased upon treating the sarcolemmal membranes with phospholipases, A, C and D; phospholipase A produced the most dramatic effect. The reduction in Mg2, ATPase activity by each phospholipase treatment was associated with a decrease in the Vmax value without any changes in the Ka value. The depression of Mg2+ ATPase in the phospholipase treated preparations was not found to be due to release of fatty acids in the medium and was not restored upon reconstitution of these membranes by the addition of synthetic phospholipids such as lecithin, lysolecithin or phosphatidic acid. In contrast to the Mg2+ ATPase, the sarcolemmal Ca2+ ATPase was affected only slightly by phospholipase treatments. The greater sensitivity of Mg- ATPase to phospholipase treatments was also apparent when deoxycholate-treated preparations were employed. These results indicate that glycerophospholipids are required for the sarcolemmal Mg2+ ATPase activity to a greater extent in comparison to that for the Ca2+ ATPase activity and the phospholipids associated with Mg2+ ATPase are predominantly exposed at the outer surface of the membrane.  相似文献   

20.
The patch clamp technique has been used to investigate ion permeation and Ca2+-dependent gating of a voltage-sensitive Ca2+ release channel in the vacuolar membrane of sugar beet tap roots. Reversal potential measurements in bi-ionic conditions revealed a sequence for permeability ratios of Ca2+ Sr2+ Ba2+ > Mg2+ K+ which is inversely related to the size of the unitary conductances K+ Mg2+ Ba2+ > Sr2+ Ca2+, suggesting that ion movement is not independent. In the presence of Ca2+, the unitary K+ current is reduced in a concentration- and voltage-dependent manner by Ca2+ binding at a high affinity site (K 0.5 = 0.29 mm at 0 mV) which is located 9% along the electric field of the membrane from the vacuolar side. Comparison of reversal potentials obtained under strictly bi-ionic conditions with those obtained in the presence of mixtures of the two ions indicates that the channel forms a multi-ion pore. Lumenal Ca2+ also has an effect on voltage-dependent channel gating. Stepwise increases of vacuolar Ca2+ from micromolar to millimolar concentrations resulted in a dramatic increase in channel openings over the physiological voltage range via a shift in threshold for channel activation to less negative membrane potentials. The steepness of the concentration dependence of channel activation by Ca2+ at –41 mV predicts that two Ca2+ ions need to bind to open the gate. The implications of the results for ion permeation and channel gating are discussed.We thank Ian Jennings for writing and implementing some of the software used in this study and Anna J. Bate for technical assistance. The work was supported by grants from the Biotechnology and Biological Sciences Research Council to E.J. (PDF/14) and DS (PG87/529).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号