共查询到20条相似文献,搜索用时 0 毫秒
1.
High pH-induced acrosome reaction and Ca2+ uptake in sea urchin sperm suspended in Na+-free seawater 总被引:1,自引:0,他引:1
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater. 相似文献
2.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater. 相似文献
3.
M T González-Martínez A Guerrero E Morales L de De La Torre A Darszon 《Developmental biology》1992,150(1):193-202
The acrosome reaction (AR) is an exocytotic event that allows sperm to recognize and fuse with the egg. In the sea urchin sperm this reaction is triggered by the outer investment of the egg, the jelly, which induces ionic movements leading to increases in intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), a K(+)-dependent transient hyperpolarization which may involve K+ channels, and a depolarization which depends on external Ca2+. The present paper explores the role of the hyperpolarization in the triggering of the acrosome reaction. The artificial hyperpolarization of Lytechinus pictus sperm with valinomycin in K(+)-free seawater raised the pHi, caused a small increase in 45Ca2+ uptake, and triggered some AR. When the cells were depolarized with KCl (30 mM) 40-60 sec after the induced hyperpolarization, the pHi decreased and there was a significant increase in 45Ca2+ uptake, [Ca2+]i, and the AR. This waiting time was necessary in order to allow the pHi change required for the AR to occur. Thus, the jelly-induced hyperpolarization may lead to the intracellular alkalinization required to trigger the AR, and, on its own or via pHi, may regulate Ca2+ transport systems involved in this process. Because of the key role played by K+ in the triggering of the AR, the presence and characteristics of ion channels in L. pictus isolated sperm plasma membranes are being explored. Planar lipid bilayers into which these membranes were incorporated by fusion displayed 85 pS single channel transitions which were cation selective. 相似文献
4.
Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of sea urchin sperm.
Sea urchin egg jelly (EJ) triggers sperm acrosome reaction (AR), an exocytotic event required for membrane fusion of the gametes. Purified fucose sulfate polymer (FSP) in EJ is one inducer of the AR. Binding of FSP to its receptor regulates opening of two distinct calcium channels and also elevates intracellular pH (pH(i)). EJ also contains sialic acid-rich glycans (sialoglycans (SG)) that were isolated by beta-elimination followed by DEAE chromatography. In the presence of limiting amounts of FSP, the SG fraction markedly potentiates the AR; however, by itself SG has no activity. The SG fraction increases the pH(i) of sperm without increasing intracellular Ca(2+). The SG-induced increase in pH(i) is not blocked by nifedipine or high K(+), whereas the FSP-induced pH(i) increase is sensitive to both these agents. Treatment of the SG fraction with neuraminidase or mild metaperiodate that specifically cleaves the glycerol side chain of sialic acid abolishes the AR potentiation and ability of SG to elevate pH(i). These data are the first to show that there are at least two pathways to induce sperm pH(i) increase and that egg surface sialic acid plays a role in triggering the sperm AR. 相似文献
5.
Evidence for the activation of two different Ca2+ channels during the egg jelly-induced acrosome reaction of sea urchin sperm 总被引:5,自引:0,他引:5
The influx of Ca2+ and its subsequent intracellular increase are required for the acrosome reaction of sea urchin sperm to occur. Spermatozoa must undergo this reaction, which is triggered by the egg jelly, in order to fertilize the egg. Here, the egg jelly-induced Ca2+ influx mechanisms have been studied in sperm loaded with FURA-2 using Mn2+ under the assumption that this divalent ion is an indicator of Ca2+ influx through Ca2+ channels. Egg jelly induced the immediate entry of Ca2+ (mixing time 1 s), however; we found that the influx of Mn2+ increased after a lag time of 5 s. Nisol-dipine (a Ca2+ channel blocker) did not block the Mn2+ influx which was inhibited by 40 mM of external [K+], low Na+, and 5 mM of tetraethylammonium (a K+ channel blocker). These conditions also inhibited the alkalinization and the acrosome reaction. The inhibition of the Mn2+ influx could be overcome by increasing internal pH (pHi) with ammonium (10 mM). On the contrary the influx of Ca2+ during the first 5 s was not inhibited by any of the conditions indicated before, except by nisoldipine. These data could be explained by the activation of two different Ca2+ channels by egg jelly. The first one being a receptor-operator Ca2+ channel that opens when the receptor for egg jelly is occupied independently of the ionic conditions. The other one could be considered as a second messenger-operated Ca2+ channel that requires at least an increase in pHi to open. 相似文献
6.
7.
Probable participation of sperm protease in the acrosome reaction was investigated using several inhibitors and substrates. Among those examined, L-l-tosylamide-2-phenylethyl chloromethyl ketone (TPCK) and chymostatin, chymotrypsin inhibitors, p-nitrophenyl-p′-guanidinobenzoate (NPGB), a serine protease inhibitor, and N-benzoyl-L-tyrosine ethyl ester (BTEE), a chymotrypsin substrate, inhibited the egg jelly-induced acrosome reaction of Strongylocentrotus intermedius. TPCK and BTEE, however, did not inhibit the reaction caused by ionophores, A23187, or nigericin. To know the mechanism of inhibition by chymotrypsin inhibitors and substrates of the egg jelly-induced acrosome reaction, intraccllular Ca2+ concentration ([Ca2+]i) and pH (pHi) were measured with fura-2 and 2′,7′-bis (carboxy-ethyl)carboxyfluorescein (BCECF), respectively. Egg jelly caused increase of [Ca2+]i which was depressed by BTEE. Egg jelly also caused a transient rise of pHi, which was not depressed by BTEE. In the presence of verapamil, the acrosome reaction by egg jelly was significantly inhibited concomitant with depressed increase of [Ca2+]i. The rise of pHj was not depressed by verapamil. Thus, modes of action of BTEE and of verapamil are similar to each other. Bringing these findings together, the authors present a view that a chymotrypsin-like protease of sea urchin sperm activates verapamil-sensitive Ca2+ channels, which take part in the acrosome reaction. 相似文献
8.
The changes in the intracellular pH (pHi) of sea urchin sperm associated with motility initiation and acrosome reaction were investigated using uptake of two different probes; 9-aminoacridine and methylamine, as a qualitative index. Sperm suspended in Na+-free sea water were immotile and able to concentrate these amines 20-fold or greater indicating that pHi is more acidic than the external medium (pHo = 7.7). This uptake ratio was essentially constant over a wide range of probe and sperm concentrations. Discharge of the pH gradient with specific ionophores (nigericin, monensin, and tetrachlorosalicylanilide) or nonspecifically using low concentration of detergents (Triton X-100 and lysolecithin) all resulted in the release of the probes indicating they are indeed sensing the pH gradient across the sperm membrane. Addition of Na+ to sperm suspended in Na+-free sea water resulted in activation of motility with concomitant efflux of the probes indicating the alkalinization of pHi by 0.4–0.5 pH units. That this pHi change is the causal trigger of motility was suggested by experiments using NH4Cl and nigericin, which increased the pHi and resulted in activation of motility in the absence of Na+. When sperm were directly diluted into artificial sea water (motility activated), a slow reacidification of pHi was observed in one species of sea urchin (L. pictus) but not in the other (S. purpuratus). This acidification could be blocked by mitochondrial inhibitors, verapamil, or the removal of external calcium suggesting that the increase in metabolic activity stimulated by the influx of Ca2+ is responsible for the reacidification. Induction of acrosome reaction further alkalinized the pHi by about 0.16 pH units and was also followed by prolonged reacidification which correlated with the observed increase in Ca2+ uptake. Either mitochondrial agents or the removal of external Ca2+ could also block this pHi change suggesting a similar mechanism is involved. 相似文献
9.
Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this cell. Sea urchin sperm Ca2+ channels are being studied by fusing isolated plasma membranes into planar lipid bilayers. With this strategy, a Ca2+ channel has been detected with the following characteristics: (a) the channel exhibits a high mainstate conductance (gamma MS) of 172 pS in 50 mM CaCl2 solutions with voltage-dependent decaying to smaller conductance states at negative Em; (b) the channel is blocked by millimolar concentrations of Cd2+, Co2+, and La3+, which also inhibit the egg jelly-induced acrosome reaction; (c) the gamma MS conductance sequence for the tested divalent cations is the following: Ba2+ greater than Sr2+ greater than Ca2+; and (d) the channel discriminates poorly for divalent over monovalent cations (PCa/PNa = 5.9). The sperm Ca2+ channel gamma MS rectifies in symmetrical 10 mM CaCl2, having a maximal slope conductance value of 94 pS at +100 mV applied to the cis side of the bilayer. Under these conditions, a different single-channel activity of lesser conductance became apparent above the gamma MS current at positive membrane potentials. Also in 10 mM Ca2+ solutions, Mg2+ permeates through the main channel when added to the cis side with a PCa/PMg = 2.9, while it blocks when added to the trans side. In 50 mM Ca2+ solutions, the gamma MS open probability has values of 1.0 at voltages more positive than -40 mV and decreases at more negatives potentials, following a Boltzmann function with an E0.5 = -72 mV and an apparent gating charge value of 3.9. These results describe a novel Ca2(+)-selective channel, and suggest that the main channel works as a single multipore assembly. 相似文献
10.
Matsumoto M Kawase O Islam MS Naruse M Watanabe SN Ishikawa R Hoshi M 《The International journal of developmental biology》2008,52(5-6):523-526
In the starfish, Asterias amurensis, three components in the jelly coat of eggs, namely acrosome reaction-inducing substance (ARIS), Co-ARIS and asterosap, act in concert on homologous spermatozoa to induce the acrosome reaction (AR). Molecular recognition between the sperm surface molecules and the egg jelly molecules must underlie signal transduction events triggering the AR. Asterosap is a sperm-activating molecule, which stimulates rapid synthesis of intracellular cGMP, pH and Ca(2+). This transient elevation of Ca(2+) level is caused by a K(+)-dependent Na(+)/Ca(2+) exchanger, and the increase of intracellular pH is sufficient for ARIS to induce the AR. The concerted action of ARIS and asterosap could induce elevate intracellular cAMP levels in starfish sperm and the sustained increase in [Ca(2+)], which is essential for the AR. The signaling pathway induced by these factors seems to be synergistically regulated to trigger the AR in starfish sperm. 相似文献
11.
M T González-Martínez B E Galindo L de De La Torre O Zapata E Rodríguez H M Florman A Darszon 《Developmental biology》2001,236(1):220-229
The acrosome reaction (AR), necessary for fertilization in many species, requires an increase in intracellular Ca(2+) ([Ca(2+)](i)). In sea urchin sperm, the AR is triggered by an egg-jelly factor: the associated [Ca(2+)](i) elevation lasts minutes and involves two Ca(2+) permeable channels. Both the opening of the second channel and the onset of the AR occur approximately 5 s after treatment with egg factor, suggesting that these events are linked. In agreement, removal of Ca(2+) from sea water or addition of Ca(2+) channel blockers at the time when opening of the second channel is first detected inhibits AR and causes a "rapid" (t(1/2) = 3--15 s) decrease in [Ca(2+)](i) and partial inhibition of the intracellular pH change associated with the AR. Simultaneous addition of NH(4)Cl and either EGTA, Co(2+), or Ni(2+) 5 s after egg factor prevents the partial inhibition of the evoked pH(i) change observed but does not reverse AR inhibition. Therefore, the sustained increase in [Ca(2+)](i) caused by the second Ca(2+) channel is needed for the sperm AR. Experiments with agents that induce capacitative Ca(2+) uptake (thapsigargin and cyclopiazonic acid) suggest that the second channel opened during the AR could be a store-operated Ca(2+) channel. 相似文献
12.
13.
Extracts of the jelly coat of eggs of several marine invertebrates are known to induce in homologous sperm morphological changes known as the acrosome reaction. When sperm of the sea urchin Strongylocentrotus purpuratus are treated with low concentrations (0.2 μg fucose/ml) of egg jelly coat or 30 mM CaCl2 in artificial seawater the acrosome reaction does not occur. However, either of these treatments causes the exposure of an acrosin-like enzyme to exogenous substrate and inhibitors. Subsequent addition of jelly coat to 3.7 μg fucose/ml to sperm in this “initial stage” induces the acrosome reaction (as judged by the appearance of an acrosomal filament). This concentration is also effective for untreated sperm. If inhibitors of the enzyme (diisopropylphosphofluoridate or phenylmethanesulfonyl fluoride) are added to sperm in the initial stage, no acrosomal filaments are observed when the high concentration of jelly coat is added. Whether other morphological changes occur in these sperm has not been examined. If phenylmethanesulfonyl fluoride is added 4 sec after the jelly coat, the acrosomal filaments are observed, but the sperm still fail to fertilize eggs. These results suggest a dual role for the acrosin-like enzyme(s), first in the mechanism of the acrosomal filament formation and then in a subsequent event in the fertilization process. 相似文献
14.
Evidence for the involvement of metalloendoproteases in the acrosome reaction in sea urchin sperm 总被引:3,自引:0,他引:3
H A Farach D I Mundy W J Strittmatter W J Lennarz 《The Journal of biological chemistry》1987,262(12):5483-5487
An essential initial step in fertilization in the sea urchin Strongylocentrotus purpuratus is an intracellular membrane fusion event in the sperm known as the acrosome reaction. This Ca2+-dependent, exocytotic process involves fusion of the membrane of the acrosomal vesicle and the plasma membrane. Recently, metalloendoproteases requiring divalent metals have been implicated in several Ca2+-dependent membrane fusion events in other biological systems. In view of the suggested involvement of Zn2+ in the sea urchin sperm acrosome reaction (Clapper, D.L., Davis, J.A., Lamothe, P.J., Patton, C., and Epel, D. (1985) J. Cell Biol. 100, 1817-1824) and the fact that Zn2+ is a metal cofactor for metalloendoproteases, we investigated the potential role of this protease in the acrosome reaction. A soluble metalloendoprotease was demonstrated and characterized in sperm homogenates using the fluorogenic protease substrate succinyl-alanine-alanine-phenylalanine-4-aminomethylcoumarin. The protease was inhibited by the metal chelators EDTA and 1,10-phenanthroline, and activity of the inactive apoenzyme could be reconstituted with Zn2+. The metalloendoprotease substrate and inhibitors blocked the acrosome reaction induced either by egg jelly coat or by ionophore, but had no effect on the influx of Ca2+. These observations suggest that inhibition occurs at a step independent of Ca2+ entry. Overall, the results of this study provide strong indirect evidence that the acrosome reaction requires the action of metalloendoprotease. 相似文献
15.
de la Sancha CU Martínez-Cadena G López-Godínez J Castellano LE Nishigaki T Nishisaki T Darszon A García-Soto J 《Biochemical and biophysical research communications》2007,364(3):470-475
Sperm must undergo the acrosome reaction (AR) in order to fertilize the egg. In sea urchins, this reaction is triggered by the egg jelly (EJ) which, upon binding to its sperm receptor, induces increases in the ion permeability of the plasma membrane and changes in protein phosphorylation. Here, we demonstrated that the sperm expresses ROCK (∼135 kDa), which is a serine/threonine protein kinase. ROCK localized, as RhoGTPase (Rho), in the acrosomal region, midpiece and flagellum. H-1152, a ROCK antagonist, inhibited the two cellular processes defining the AR: the acrosomal exocytosis and the actin polymerization. The ionophores nigericin and A23187 reversed the AR inhibition induced by H-1152, suggesting that ROCK functions at the level of the EJ-induced ion fluxes. Accordingly, H-1152 blocked 70% the intracellular alkalinization induced by EJ. These results indicate that EJ activates a Na+-H+ exchanger (NHE) in the sperm through a Rho/ROCK-dependent signaling pathway that culminates in the AR. 相似文献
16.
When the surface of sea urchin (Strongylocentrotus purpuratus) sperm is radioiodinated, 75% of the protein-incorporated radioactivity is associated with two glycoproteins of Mr 84,000 (84K) 64,000 (64K) (Lopo and Vacquier 1980). Antibodies were prepared against these two components by separating a Triton X-100 extract of sperm on SDS-polyacrylamide gels, cutting out the band containing the glycoprotein and injecting the homogenized gel into rabbits. Both anti-84K and anti-64K sera agglutinate sperm. Light and EM immunoperoxidase localization show both antigens are distributed over the entire sperm surface. By the immunoperoxidase technique there is some degree of cross-reactivity of both antisera with sperm of other Strongylocentrotus species, but not with those of other genera. Living sperm incubated with anti-84K Fab fragments are completely inhibited from undergoing the egg jelly-induced acrosome reaction and fertilizing eggs. Anti-64K Fab fragments have no effect on the ability of the sperm to undergo the acrosome reaction or fertilize eggs. Sperm incubated in anti-84K or anti-64K Fab fragments undergo the acrosome reaction in response to the Ca2+ ionophore A23187, or when the extracellular pH is increased to 9.2 with NH4OH, indicating that the inhibition of the egg jelly-induced acrosome reaction results from the binding of the anti-84K Fab to an external molecule involved in the initiation or propagation of the acrosome reaction. The 84K glycoprotein is the first sperm surface component identified that might have a role in the induction of the acrosome reaction. 相似文献
17.
A linear fucose sulfate polymer (FSP), >10(6) daltons, is a major component of sea urchin egg jelly. FSP induces the sperm acrosome reaction (AR), an exocytotic process required for animal fertilization. Two Ca(2+) channels activate during AR induction, the first opens 1 s after FSP addition, and the second opens 5 s after the first. Mild acid hydrolysis of FSP results in a linear decrease in polymer size. The ability of FSP to induce the AR and activate sperm Ca(2+) channels decreases with increasing time of hydrolysis. Hydrolyzed FSP of approximately 60 kDa blocks intact FSP from inducing the AR. At 44 microg/ml hydrolyzed FSP, Ca(2+) entry into sperm is almost equal to that occurring in 3.8 microg/ml intact FSP; however the AR is not induced. The shape of the [Ca(2+)](i) increase curve and use of the Ca(2+) channel blockers nifidipine and Ni(2+) indicate that hydrolyzed FSP opens the second Ca(2+) channel, but not the first, and thus does not induce the AR. The giant size of intact FSP is required to open both Ca(2+) channels involved in triggering the AR. 相似文献
18.
Characterization of a monoclonal antibody that induces the acrosome reaction of sea urchin sperm 总被引:3,自引:3,他引:3 下载免费PDF全文
J S Trimmer Y Ebina R W Schackmann C G Meinhof V D Vacquier 《The Journal of cell biology》1987,105(3):1121-1128
A monoclonal antibody, J18/29, induces the acrosome reaction (AR) in spermatozoa of the sea urchin Strongylocentrotus purpuratus. J18/29 induces increases in both intracellular Ca2+ and intracellular pH similar to those occurring upon induction of the AR by the natural inducer, the fucose sulfate-rich glycoconjugate of egg jelly. Lowering the Ca2+ concentration or the pH of the seawater inhibits the J18/29-induced AR, as does treatment with Co2+, an inhibitor of Ca2+ channels. The J18/29-induced AR is also inhibited by verapamil, tetraethylammonium chloride, and elevated K+. All these treatments cause similar inhibition of the egg jelly-induced AR. J18/29 reacts with a group of membrane proteins ranging in molecular mass from 340 to 25 kD, as shown by immunoprecipitation of lysates of 125I-labeled sperm and Western blots. The most prominent reacting proteins are of molecular masses of 320, 240, 170, and 58 kD. The basis of the multiple reactivity appears to reside in the polypeptide chains of these proteins, as J18/29 binding is sensitive to protease digestion but resistant to periodate oxidation. There are approximately 570,000 sites per cell for J18/29 binding. J18/29 is the only reagent of known binding specificity that induces the AR; it identifies a subset of sperm membrane proteins whose individual characterization may lead to the isolation of the receptors involved in the triggering of the AR at fertilization. 相似文献
19.
Victor D. Vacquier 《Experimental cell research》1984,153(2):281-286
Two assays employing rhodamine-conjugated and peroxidase-conjugated antibindin are presented. The assays are used to detect the occurrence of the acrosome reaction in sea urchin sperm. The assays are rapid and can be performed on large numbers of samples. The scoring of the reacted and unreacted cells can be done accurately at a rate of 60 cells/min. 相似文献
20.