首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different glucans (PS-I, water-soluble; and PS-II, water-insoluble) were isolated from the alkaline extract of fruit bodies of an edible mushroom Calocybe indica. On the basis of acid hydrolysis, methylation analysis, periodate oxidation, and NMR analysis ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides were established as: PS-I: →6)-β-D-Glcp-(1→6)-β-D-glcp-(1→6)-)-β-D-Glcp-(1→ α-D=Glcp (Water-soluble glucan). PS-II: →3)-β-D-Glcp-(1→3)-β-D-glcp-(1→3)-)-β-D-Glcp-(1→3)-β-D-Glcp-(1→ β-D-Glcp (Water-insoluble glucan, Calocyban).  相似文献   

2.
Two different glucans (water-soluble PS-I, water-insoluble PS-II) were isolated from the alkaline extract of the fruit bodies of hybrid mushroom. PS-I was found to consist of only (1→6)-linked β-D-glucopyranose. PS-II was composed of terminal, (1→3,4)-linked, and (1→3)-linked β-D-glucopyranosyl moieties in a molar ratio of nearly 1:1:1. PS-I showed macrophages, splenocytes, and thymocytes activation as well as antioxidant property. On the basis of sugar analysis, methylation analysis, and NMR studies ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these glucans were established as:  相似文献   

3.
Two different glucans (PS-I and PS-II) were isolated from the alkaline extract of the fruiting bodies of an edible mushroom, Pleurotus florida blue variant and the PS-I showed macrophage, splenocyte and thymocyte activations. On the basis of sugar analysis, methylation analysis, periodate oxidation, and NMR studies ((1)H, (13)C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC and HMBC), the structure of the repeating unit of these polysaccharides were established.  相似文献   

4.
Three polysaccharide fractions (PS-I, PS-II, and PS-III) were isolated from the aqueous extract of a hybrid mushroom obtained through backcross mating of a somatic hybrid mushroom PfloVv12 (Sterile line) with Volvariellavolvacea. PfloVv12 was obtained through protoplast fusion of Pleurotusflorida and V. volvacea. PS-I was identified as 1,6-β glucan. PS-II and PS-III were identified as mannoglucogalactan but differing in molecular weights only. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, and NMR experiment (1H, 13C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC) the structures of these polysaccharides were established as;  相似文献   

5.
Three different glucans (PS-I, PS-II, and PS-III) were isolated from the alkaline extract of the fruiting bodies of an edible mushroom Pleurotus florida, cultivar Assam Florida. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, Smith degradation, and NMR experiments (1H, 13C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides was established as follows:  相似文献   

6.
Clostridium difficile is a Gram-positive bacterium that is known to be a cause of enteric diseases in humans. It is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis. Recently, large outbreaks of C. difficile-associated diarrhea have been reported internationally, and there have been reports of increases in severe disease, mortality and relapse rates. At the moment, there is no vaccine against C. difficile, and the medical prevention of C. difficile infection is mostly based on the prophylactic use of antibiotics; however, this has led to an increase in the incidence of the disease. Here, we describe the chemical structure of C. difficile cell-surface polysaccharides. The polysaccharides of three C. difficile strains were structurally analyzed; ribotype 027 (North American pulsotype 1) strain was observed to express two polysaccharides, one was composed of a branched pentaglycosyl phosphate repeating unit: [-->4)-alpha-l-Rhap-(1-->3)-beta-D-Glcp-(1-->4)-[alpha-l-Rhap-(1-->3]-alpha-D-Glcp-(1-->2)-alpha-D-Glcp-(1-->P] and the other was composed of a hexaglycosyl phosphate repeating unit: [-->6)-beta-D-Glcp-(1-->3)-beta-D-GalpNAc-(1-->4)-alpha-D-Glcp-(1-->4)-[beta-D-Glcp-(1-->]-beta-D-GalpNAc-(1-->3)-alpha-D-Manp-(1-->P]. The latter polysaccharide was also observed to be produced by strains MOH900 and MOH718. The results described here represent the first literature report describing the covalent chemical structures of C. difficile cell-surface polysaccharides, of which PS-II appears to be a regular C. difficile antigen. These C. difficile teichoic-acid-like polysaccharides will be tested as immunogens in vaccine preparations in a rat and horse model.  相似文献   

7.
The production of exopolysaccharides (EPSs) by a mucoid clinical isolate of Burkholderia cepacia involved in infections in cystic fibrosis patients, was studied. Depending on the growth conditions, this strain was able to produce two different EPS, namely PS-I and PS-II, either alone or together. PS-I is composed of equimolar amounts of glucose and galactose with pyruvate as substituent, and was produced on all media tested. PS-II is constituted of rhamnose, mannose, galactose, glucose and glucuronic acid in the ratio 1:1:3:1:1, with acetate as substituent, and was produced on either complex or minimal media with high-salt concentrations (0.3 or 0.5 M NaCl). Although this behavior is strain-specific, and not cepacia-specific, the stimulation of production of PS-II in conditions that mimic those encountered by B. cepacia in the respiratory track of cystic fibrosis patients, suggests a putative role of this EPS in a pathologic context.  相似文献   

8.
The common ancestor of all photosynthetic prokaryotes and organelles contained chlorophyll (Chl) a. All green and purple photosynthetic bacteria descended from a common bacteriochlorophyll (Bchl) a-containing ancestor which diverged from the Chl a line. Separate PS-I and PS-II reaction centers may have evolved before the appearance of Bchl a. When the transition to Bchl a occurred, the resultant organism contained two types of reaction center, “PS-I” and “PS-II.” One line of development eliminated “PS-II” and evolved into the green bacteria. The other line eliminated “PS-I” and became the purple bacteria. In the Chl a-containing organisms the evolution of PS-II continued until oxygen evolution was achieved.  相似文献   

9.
Summary Spinach chloroplasts were exposed to35S-labeledp-(diazonium)-benzenesulfonic acid (DABS), a water soluble compound which does not penetrate lipophilie regions of membranes, and which is highly reactive toward amino acid functionagroups such as -amino, sulfhydryl, histidine, and tyrosine groups. Amino groups inl lipids can also form similar, stable covalent bonds by diazo coupling. Both chloroplast lipids and proteins were labeled with DABS, the total binding being about 1 DABS per 10 chlorophylls, depending on the reaction conditions.After diazo coupling and subsequent digitonin fractionation into photosystems I and II enriched fractions, it was observed that PS-I was more highly labeled than PS-III usually by a factor of 10 to 24 times (on a per chlorophyll basis). After digitonin isolation, however, the PS-II portion bound an amount of DABS similar to the PS-I binding, We interpret these data as consistent with the binary membrane hypothesis (Arntzen. Dilley and Crane (1969),J. Cell Biol. 43:16), which visualizes PS-I on the externa, half of a 90 Å grana membrane, and PS-II occurring on the interior half of thel membrane. The alternative explanation that PS-II and PS-I are arranged as a mosaic, and that the low DABS binding in PS-II is caused by burial of the diazo reactive groups in the interior of the proteins (and only exposed through the denaturing effect of digitonin) is not directly ruled out. However, this alternative is not consistent with the facts that: (a) most of the membrane proteins in PS-I and PS-II are identical in electrophoretic properties and therefore probably have similar overall structures; and (b) digitonin does not lead to appreciable denaturation of proteins, evidenced by the retention of PS-II electron transport activity.  相似文献   

10.
Six polysaccharides were extracted sequentially from the fresh sclerotium of Poria cocos cultivated in China using 0.9% NaCl (PCS1), hot water (PCS2), 0.5M NaOH (PCS3-I and PCS3-II), and 88% formic acid (PCS4-I and PCS4-II). Their chemical and physical characteristics were determined using infrared spectroscopy (IR), gas chromatography (GC), GC-MS methylation analysis, 13C NMR spectroscopy, elementary analysis (EA), protein analysis, size exclusion chromatography combined with laser light scattering (SEC-LLS), light scattering (LS), and viscometry. The results indicated that the polysaccharides PCS1, PCS2, and PCS3-I were heteropolysaccharides containing D-glucose, D-galactose, D-mannose, D-fucose, and D-xylose; the predominant monosaccharide was D-glucose except for PCS1 where it was D-galactose. PCS3-II, the main component of the sclerotium of P. cocos, was a linear (1-->3)-beta-D-glucan of high purity. PCS4-I consisted of (1-->3)-beta-D-glucan with some beta-(1-->6) linked branches. PCS4-II was mainly composed of (1-->3)-beta-D-glucan containing some glucose branches. The M(w) values of the six polysaccharides PCS1, PCS2, PCS3-I, PCS4-I in 0.2M NaCl aqueous solution, PCS3-II, and PCS4-II in dimethyl sulfoxide (Me(2)SO) were determined to be 11.6 x 10(4), 20.8 x 10(4), 17.1 x 10(4), 9.1 x 10(4), 12.3 x 10(4), and 21.1 x 10(4), respectively. The six polysaccharides in aqueous solution or Me(2)SO exist as flexible chains.  相似文献   

11.
Wu Z  Kong F 《Carbohydrate research》2003,338(17):1727-1735
alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[alpha-D-Manp-(1-->6)]-D-Glcp and alpha-D-Manp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)[-alpha-D-Manp-(1-->6)]-D-Glcp were synthesized in a regio- and stereoselective way as the mannose-containing analogues of the immunomodulating beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp.  相似文献   

12.
当突变种大麦Chlorina-f 2的类囊体膜在SDS/叶绿素的重量比为10:1,叶绿素的浓度为0.5mg/ml的条件下增溶,并在SDS-聚丙烯酰胺凝胶电泳中进行分离时,共出现4条含叶绿素的带。按电泳迁移率的增加,这些带分别是CP Ⅰ,CPa 1,CPa 2和FC。光谱测定表明CP Ⅰ为混有少量光系统Ⅱ??成分的光系统Ⅰ反应中心复合体,CPa 2为光系统Ⅱ反应中心复合体,CPa 2为光系统Ⅱ内周天线复合体。属于光系统Ⅰ的CP Ⅰ的叶绿素含量占总叶绿素的45.6%,而属于光系统Ⅱ的CPa Ⅰ和CPa 2的叶绿素之和则占总叶绿素的43.2%。可见在缺b大麦中,两个都失缺其外周天线的光系统的叶绿素含量是基本相等的。这和光合作用中两个光反应相互串联的理论是完全一致的。  相似文献   

13.
14.
Cryptococcus flavescens, a strain originally identified as C. laurentii, was isolated from the cerebrospinal fluid of an AIDS patient, and the soluble capsular polysaccharide of the yeast was investigated. Glucuronoxylomannan (GXM) was obtained from C. flavescens under conditions similar to those used to obtain C. neoformans polysaccharide. However, the GXM differed from C. neoformans polysaccharide in the decreased O-acetyl group content. The structure of GXM was determined by methylation analysis, partial acid hydrolysis, NMR analyses, and controlled Smith degradation. These analyses indicated that GXM has the following structure: an alpha-(1-->3)-D-mannan backbone with side chains of beta-D-glucuronic acid residues bound to the C-2 position of the mannose residue. The C-6 position of the mannose is substituted with D-man-beta-(1-->4)-D-xyl-beta-(1--> disaccharide. Furthermore, the existence of side chains containing more than two xylose residues was suggested. This mannosylxylose side chain is a novel structure in polysaccharides of C. neoformans and other Cryptococcus species.  相似文献   

15.
For cotton mutant xantha (Gossypium hirsutum L.), it has been established that synthesis of 5-aminolevulinic acid was blocked in the light. In the light this mutant accumulates chlorophyll by 30 times lower as compared to the parent type. In mutant xantha, a very few pigment-protein complexes of PS-I and PS-II are formed in chloroplasts, and formation of membrane system in these is blocked at the early stages, in most cases, at the stage of bubbles and single short thylakoids. Functional activity of reaction centers of PS-I and PS-II is close to zero. Only light-harvesting chlorophyll-a/b protein complexes of the two photosystems are formed in mutant xantha plastid membranes with maximum chlorophyll fluorescence at 728 and 681 nm, respectively. It has been concluded that in mutant xantha genetic block of 5-aminolevulinic acid biosynthesis in the light disturbs the formation and functioning of the complexes of reaction centers of PS-I and PS-II, hindering the development of the whole membrane system in chloroplasts, causing a sharp decrease in productivity.  相似文献   

16.
Several extracellular glucans have been isolated from Phytophthora parasitica Dastur, a phytopathogenic fungus of the carnation. These polysaccharides consist of a mixture of (1-->3)(1-->6)-beta-D-glucans whose molecular masses varied from 1 x 10(4) to 5 x 10(6) Da. All of these polysaccharides have a main chain of beta-(1-->3)-linked D-glucose residues substituted with mono-, di- and oligo-saccharidic chains attached through (1-->6) linkages.  相似文献   

17.
Three acidic polymer fractions with molecular masses of about 16 kDa, 35 kDa and 70 kDa were isolated from lysozyme digests of N-acetylated cell walls of Bacillus polymyxa AHU 1385 by ion-exchange chromatography and gel chromatography. These fractions, containing mannosamine, glucosamine and pyruvic acid in a molar ratio of about 1:1:1 together with glycopeptide components, were characterized as polysaccharide-linked glycopeptides with one, two and more polysaccharide chains. On the other hand, treatment of the cell walls with glycine/HC1 buffer, pH 2.5, at 100 degrees C for 10 min followed by separation of water-soluble products on ion-exchange chromatography gave three polysaccharide fractions, PS-I-III, which contained different amounts of pyruvic acid (0,0.6 and 0.9 residue/mannosamine residue) along with equimolar amounts of mannosamine and glucosamine. Pyruvate-free polysaccharides similar to PS-I were also obtained from PS-II, PS-III and polysaccharide-linked glycopeptides by treatment with 10 mM HC1 at 100 degrees C for 1 h. Results of analyses of these polysaccharide preparations by 1H-NMR and 13C-NMR measurement and methylation, together with data from characterization of fragments obtained by hydrogen fluoride hydrolysis, lead to the most likely structure, ----3)[4,6-O-(1-carboxyethylidene)]ManNAc(beta 1----4)GlcNac(beta 1----, for the acidic polysaccharide of this strain.  相似文献   

18.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

19.
A study was conducted on the structure of extracellular, water-soluble polysaccharides from 5 different strains ofRhizobium viz. R. trifolii J60 andR. meliloti strains J7017, 202, 204 and 207. All these polysaccharides were found to contain glucose and galactose in the approximate molar ratio of 7:1. Methylation analysis revealed these polysaccharides to contain (1 → 3), (1 → 6), (1 → 4), (1 → 4, 1 → 6)-linked D-glucose residues, (1 → 3)-linked D-galactose and nonreducing terminal D-glucose attached to pyruvate. These polysaccharides were also found to be acylated by both acetyl and succinyl residue. This structure was found to be similar to that of succinoglycan, a succinic acid-containing water-soluble, extra-cellular polysaccharide elaborated byAlcaligenes faecalis var.myxogenes 10C3. This similarity in structure of polysaccharides from two different species ofRhizobium and also the polysaccharide produced byAlcaligenes has been discussed.  相似文献   

20.
(1) To analyze the photoelectron flow related to photosystemII, particle II preparation, i.e., the chloroplast fragmenthaving only photosystem II activity, proved to be far betterthan the generally used chloroplast preparations having activitiesof both PS-I and PS-II. (2) By simultaneous measurements ofthe activities of O2 evolution and DPIP- and ferricyanide photoreductionusing variously-treated particle II preparations, it was foundthat a noticeable activity of ferricyanide photoreduction wasstill observed, though the former two activities were completelylost in the course of treatments such as Tris-treatment, pre-illuminationand aging. (3) Besides this, differences were found betweenferricyanide- and DPIP-photoreduction in respect to susceptibilityto CCCP, availability of artificial electron donor, and theeffect of chloride addition. However, both photo-reductionswere equally inactivated by heat-treatment and addition of DCMU.(4) To explain the observed distinctions between DPIP and ferricyanidein their mode of action as electron acceptor for PS-II, a schemesuggesting the involvement of two light reactions in PS-II isproposed and the electron flow near PS-II is discussed. 1 This work has been supported by Grants from the Ministry ofEducation (Nos. 8425- 70-'71; 4970l4-'69-'71), which are gratefullyacknowledged here. (Received January 12, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号