首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The accessibility and localization of tryptophane residues in the influenza viral hemagglutinin molecule have been determined by measuring specific quenching of tryptophane fluorescence by neutral (acrylamide), anionic (I-) and cationic (Cs+) quenchers. It has been shown that acrylamide quenches 64% of tryptophane fluorescence in H3-hemagglutinin whereas I- and Cs+ quench only 34%. The tryptophanyl residues have been assumed to be located in the hemagglutinin molecule both in the cationic and anionic environments. 64% of tryptophanyls have been shown to be located on the surface of the protein globule.  相似文献   

2.
The accessibility of tryptophan residues in immunoglobulin M to modification with the Koshland reagent (2-hydroxy-5-nitrobenzyl bromide) was used as an indicator of its conformational variability. Of 14 tryptophan residues (per HL-fragment) in the native IgM, only one (presumably Trp312 in the mu-chain) was the most accessible. Irreversible acid- or temperature-induced conformational changes of IgM increased almost 2-fold the number of accessible tryptophan residues. After partial enzymatic deglycosylation of IgM (especially by an intense splitting of mannose), all tryptophan residues became inaccessible. Modification of the most accessible tryptophan residue increased 2- to 3-fold the number of tyrosine residues accessible to nitration with tetranitromethane. Using the spin label method, it was demonstrated that modification of four tryptophan residues in IgM considerably decreased the mobility of the Cmu 3 domain together with an essential drop in. the solubility of the modified IgM.  相似文献   

3.
Chemical modification of tryptophan residues by N-bromosuccinimide was used to determine the role of these residues in the NADPH-adrenodoxin-catalyzed reduction of adrenodoxin, dichlorophenolindophenol and ferricyanide. It was shown that the rate of reduction of all electron acceptors diminishes with modification of tryptophan residues. The most significant decrease of the enzyme activity is observed in case of adrenodoxin-catalyzed reactions. It was suggested that tryptophan residues are responsible for the adrenodoxin reductase interaction with adrenodoxin.  相似文献   

4.
Previously, we reported that the glycosaminoglycan (GAG) hyaluronic acid (HA) specifically bound to the plasma protein fibrinogen [LeBoeuf, R. D., Raja, R. R., Fuller, G. M., & Weigel, P. H. (1986) J. Biol. Chem. 261, 12586]. The binding of other macromolecules to fibrinogen could influence the conversion of fibrinogen to fibrin. Therefore, we tested whether HA and other GAGs could alter the kinetics of fibrin polymer formation and the physical structure of the resulting gel. In this study, we present data showing that the GAGs HA and chondroitin sulfate (CS) affect fibrin formation in three specific ways: (i) they decreased the clotting time of fibrinogen 3-10-fold; (ii) both GAGs increase significantly the rate of fibrin polymer formation; and (iii) fibrin gels containing HA or CS had a final A450 that was greater than controls, indicating that these two glycosaminoglycans influence either the final size of fibrin fibrils or the extent of the lateral association between fibrils. These results demonstrate that the interactions of HA and CS with forming fibrin polymers can alter both the kinetics of formation and may produce structural changes in fibrin gels.  相似文献   

5.
The singlet molecular oxygen-oxidation of tryptophan generates diastereoisomeric dioxindolylalanine (diOia) along with hydroperoxides, alcohols and carbonyl compounds. Mechanistic investigations based on isotopic labeling and MS/MS analyses support diOia formation through a dioxetane intermediate.  相似文献   

6.
7.
8.
Studies on the tryptophan residues in porcine pepsin   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
Fluorescence of tryptophan residues in serum albumin   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
Instead of looking at the interfacial area as a measure of the extent of a protein--protein recognition site, a new procedure has been developed to identify the importance of a specific residue, namely tryptophan, in the binding process. Trp residues which contribute more towards the free energy of binding have their accessible surface area reduced, on complex formation, for both the main-chain and side-chain atoms, whereas for the less important residues the reduction is restricted only to the aromatic ring of the side chain. The two categories of residues are also distinguished by the presence or absence of hydrogen bonds involving the Trp residue in the complex. A comparison of the observed change in the accessible surface area with the value calculated using an analytical expression provides another way of characterizing the Trp residues critical for binding and this has been used to identify such residues involved in binding non-proteinaceous molecules in protein structures.  相似文献   

13.
14.
A single tryptophan residue on antithrombin has been modified with dimethyl-(2-hydroxy-5-nitrobenzyl)sulfonium bromide. This alteration led to a 500-fold reduction in the heparin-dependent acceleration of thrombin-modified antithrombin interactions, as well as a 10-fold decrease in the avidity of the modified protease inhibitor for mucopolysaccharide. Preincubation of antithrombin with the octasaccharide binding domain of heparin prior to treatment with dimethyl-(2-hydroxy-5-nitrobenzyl)sulfonium bromide was able to suppress modification of the critical tryptophan and preserve the functional capacities of the protease inhibitor. Fluorescence quenching experiments indicated that the modifiable tryptophan groups of antithrombin were exposed to the solvent environment. Based upon these data, it was proposed that the loss of “heparin cofactor” activity of antithrombin must be predominantly due to an inability of the modified protease inhibitor to undergo a conformational transition required for mucopolysaccharide-dependent “activation” of the macromolecule.  相似文献   

15.
That the role of thrombin in the conversion of fibrinogen to fibrin is essentially enzymatic, is established not only by the minute amounts of thrombin which are effective but also by the complete independence of fibrin yields and thrombin concentrations over a very wide range of thrombin dilutions and clotting times. The thrombin-fibrinogen reaction, in the phase beyond the "latent period" at least, seems fundamentally "first order." Technical requirements of the experiments leading to these conclusions include: (1) a highly purified (e.g. 97 per cent "clottable") fibrinogen, (2) absence of traces of thrombic impurities in the fibrinogen, (3) absence of fibrinolytic protease contaminant of the thrombin and the fibrinogen, and (4) sufficient stability of the thrombin even at very high dilutions. Four conditions affecting thrombin stability have been investigated. Fibrin yields are not significantly modified by numerous experimental circumstances that influence the clotting time, such as (1) temperature, (2) pH, (3) non-specific salt action due to electrical (ionic) charges, which alter the Coulomb forces involved in the fibrillar aggregation, (4) specific ion effects, whether clot-accelerating (e.g. Ca++) or clot-inhibitory (e.g. Fe(CN)6'), (5) occluding (adsorptive) colloids, which have a "fibrinoplastic" action, e.g. (a) acacia and probably (b) fibrinogen which has been mildly "denatured" by salt-heating, acidification, etc. The data with which several European workers have attempted to substantiate the idea of a two-stage thrombin-fibrinogen reaction with an intermediary "profibrin" (allegedly partly "denatured") have been reanalyzed with controls which lead us to very different conclusions, viz. (1) denaturation and fibrin formation are independent; (2) partial denaturation is "fibrinoplastic" (see above); and (3) conditions of strong salinity and acid pH (5.1) usually do not completely prevent the thrombin-fibrinogen reaction but merely prolong the "latent" phase and lessen the time required for completion of essentially the same reaction (fibrin polymerization) when more favorable clotting conditions are restored. Thus, our experiments advance the modern concepts concerning the coagulation mechanisms along lines that, for the most part, agree with those of the Harvard physical chemists, and we oppose the European views concerning a two-stage reaction, "profibrin," and "the denaturase theory" of clotting.  相似文献   

16.
The accessibility of the tryptophans in dog kidney Na,K-ATPase was studied with the technique of quenching by acrylamide. By use of a modified Stern-Volmer equation, fa, the effective fraction of tryptophans most exposed to quencher, and Ka, the effective quenching constant, were calculated. The direct Stern-Volmer plots are nonlinear under nondenaturing conditions, indicating that the tryptophan residues are unequally accessible to quencher. Modified Stern-Volmer plots revealed marked differences in the exposure of tryptophans in the E1 and E2 states. In the presence of Na or ADP, ligands that stabilize E1, these plots curve downward, indicating that the in addition to buried (unquenched) tryptophans, there is a heterogeneous class of tryptophans. In the presence of K or ouabain, conditions that favor E2, the modified Stern-Volmer plots are linear, consistent with a homogeneous population of tryptophans. Treatment with chymotrypsin to block the E1 to E2 transition results in a new set of quenching parameters which are unchanged with Na or K. Even after detergent denaturation (1% sodium dodecyl sulfate for 30 min), Stern-Volmer plots are nonlinear, and a significant fraction of tryptophan residues remain inaccessible to quencher. Denaturation with urea or guanidine HCl plus dithiothreitol increases the fraction of quenchable fluorescence even more, but still a small fraction, about 7-13%, is buried. The observed changes in exposure of the tryptophan residues would seem to account for the differences in intrinsic fluorescence seen on adding K and Na to Na,K-ATPase. The present results provide new evidence that a significant rearrangement of amino acid residues results from the E1 to E2 transition. Furthermore, a region of the molecule is inaccessible even after denaturation; this may correspond to highly hydrophobic stretches that are normally buried in the membrane.  相似文献   

17.
18.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   

19.
The carboxyl-terminal residues of mammalian fibrinogens of six different species and the chain peptides, alpha(A), beta(B) and gamma, isolated from these fibrinogens were determined by hydrazinolysis, digestion with carboxypeptidases and selective tritium labelling. The C-terminal ends of bovine fibrinogen and fibrin were identified as proline and valine, in the molar ratio of approximately 1:2. Proline was identified as the C-terminus of the alpha(A)-chain, and C-terminal valine was found on both the beta(B)- and gamma-chains. On hydrazinolysis after selective tritium labelling of fibrinogen, radioactive C-terminal valine was also identified. The same C-terminal ends as those of bovine fibrinogen were found on the corresponding chain peptides isolated from sheep fibrinogen. The C-terminal residues of all the chain peptides of human and horse fibrinogens, however, were valine. In hog and dog fibrinogens, proline was identified at the C-termini of the alpha(A)-chains, and C-terminal valine and isoleucine were found on the beta(B)- and gamma-chains, respectively. Thus, the C-terminal amino acid residues of the fibrinogens of all mammalian species tested were very similar. It should be noted that hydrophobic amino acids, like isoleucine, valine and proline, are mainly located in the C-terminal ends of all three chain peptides in the fibrinogen molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号