首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The armadillo protein SmgGDS promotes guanine nucleotide exchange by small GTPases containing a C-terminal polybasic region (PBR), such as Rac1 and RhoA. Because the PBR resembles a nuclear localization signal (NLS) sequence, we investigated the nuclear transport of SmgGDS with Rac1 or RhoA. We show that the Rac1 PBR has significant NLS activity when it is fused to green fluorescent protein (GFP) or in the context of full-length Rac1. In contrast, the RhoA PBR has very poor NLS activity when it is fused to GFP or in the context of full-length RhoA. The nuclear accumulation of both Rac1 and SmgGDS is enhanced by Rac1 activation and diminished by mutation of the Rac1 PBR. Conversely, SmgGDS nuclear accumulation is diminished by interactions with RhoA. An SmgGDS nuclear export signal sequence that we identified promotes SmgGDS nuclear export. These results suggest that SmgGDS. Rac1 complexes accumulate in the nucleus because the Rac1 PBR has NLS activity and because Rac1 supplies the appropriate GTP-dependent signal. In contrast, SmgGDS.RhoA complexes accumulate in the cytoplasm because the RhoA PBR does not have NLS activity. This model may be applicable to other armadillo proteins in addition to SmgGDS, because we demonstrate that activated Rac1 and RhoA also provide stimulatory and inhibitory signals, respectively, for the nuclear accumulation of p120 catenin. These results indicate that small GTPases with a PBR can regulate the nuclear transport of armadillo proteins.  相似文献   

2.
Wu X  Tu X  Joeng KS  Hilton MJ  Williams DA  Long F 《Cell》2008,133(2):340-353
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.  相似文献   

3.
The small GTPase Rac1 is involved in multiple cytosolic functions but recent data point out that Rac1 also translocates to the nucleus to regulate signalling pathways that control gene expression and progression through the cell cycle. Here, we identify the nuclear import receptor karyopherin α2 (KPNA2) as a direct interaction partner of Rac1. The C‐terminal polybasic region of Rac1 contains a nuclear localization signal (NLS), whereas Rac2 and Rac3 lack a functional NLS and do not bind to KPNA2. The presence of the NLS in Rac1 determines the specificity of the interaction and is a prerequisite for the nuclear import. Although this interaction is independent of the Rac1 GDP/GTP loading, the induction of the translocation requires Rac1 activation. The activation of Rac1 via the cytotoxic necrotizing factor 1 and the concurrent inhibition of its proteasomal degradation are crucial for the nuclear accumulation of Rac1. Conversely, the reduction of KPNA2 expression inhibits the nuclear import of Rac1. For the first time, our results show a direct interaction between Rac1 and KPNA2 and argue for a KPNA2‐dependent nuclear import of Rac1. Liquid chromatography tandem mass spectrometry (LC‐MS/MS) analysis revealed that nuclear Rac1 coimmunoprecipitates with numerous proteins. In the nucleus, Rac1 may participate in a variety of so far uncharacterized processes.  相似文献   

4.
5.
Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton.  相似文献   

6.
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling.  相似文献   

7.
8.
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of β-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic β-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3β-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.  相似文献   

9.
10.
11.
12.
13.
14.
Ubiquitination and proteasomal degradation have recently emerged as an additional level of regulation of activated forms of Rho GTPases. To characterize this novel regulatory pathway and to gain insight into its biological significance, we studied the ubiquitination of two constitutively activated forms of Rac1, i.e. the mutationally activated Rac1L61, and the tumorigenic splice variant Rac1b, which is defective for several downstream signaling pathways, including JNK activation. Whereas Rac1L61 undergoes polyubiquitination and subsequent proteasomal degradation in HEK293 cells, Rac1b is poorly ubiquitinated and appears to be much more resistant to proteasomal degradation than Rac1L61. Mutational analysis of all lysine residues in Rac1 revealed that the major target site for Rac1 ubiquitination is Lys147, a solvent-accessible residue that has a similar conformation in Rac1b. Like Rac1L61, Rac1b was found to be largely associated with plasma membrane, a known prerequisite for Rac1 ubiquitination. Interestingly, Rac1b ubiquitination could be stimulated by coexpression of Rac1L61, suggesting positive regulation of Rac1 ubiquitination by Rac1 downstream signaling. Indeed, ubiquitination of Rac1L61 is critically dependent on JNK activation. In conclusion: (a) Rac1b appears to be more stable than Rac1L61 with regard to the ubiquitin-proteasome system, and this may be of importance for the expression and tumorigenic capacity of Rac1b; and (b) ubiquitination of activated Rac1 occurs through a JNK-activated process, which may explain the defective ubiquitination of Rac1b. The JNK-dependent activation of Rac1 ubiquitination would create a regulatory loop allowing the cell to counteract excessive activation of Rac1 GTPase.  相似文献   

15.
Tight regulation of Wnt/β-catenin signaling is critical for vertebrate development and tissue maintenance, and deregulation can lead to a host of disease phenotypes, including developmental disorders and cancer. Proteins associated with primary cilia and centrosomes have been demonstrated to negatively regulate canonical Wnt signaling in interphase cells. The plant homeodomain zinc finger protein Jade-1 can act as an E3 ubiquitin ligase-targeting β-catenin for proteasomal degradation and concentrates at the centrosome and ciliary basal body in addition to the nucleus in interphase cells. We demonstrate that the destruction complex component casein kinase 1α (CK1α) phosphorylates Jade-1 at a conserved SLS motif and reduces the ability of Jade-1 to inhibit β-catenin signaling. Consistently, Jade-1 lacking the SLS motif is more effective than wild-type Jade-1 in reducing β-catenin-induced secondary axis formation in Xenopus laevis embryos in vivo. Interestingly, CK1α also phosphorylates β-catenin and the destruction complex component adenomatous polyposis coli at a similar SLS motif to the effect that β-catenin is targeted for degradation. The opposing effect of Jade-1 phosphorylation by CK1α suggests a novel example of the dual functions of CK1α activity to either oppose or promote canonical Wnt signaling in a context-dependent manner.  相似文献   

16.
Our previous study demonstrated that transforming growth factor (TGF)-β activates β-catenin signaling through Smad3 interaction with β-catenin in chondrocytes. In the present studies, we further investigated the detailed molecular mechanism of the cross-talk between TGF-β/Smad3 and Wnt/β-catenin signaling pathways. We found that C-terminal Smad3 interacted with both the N-terminal region and the middle region of β-catenin protein in a TGF-β-dependent manner. Both Smad3 and Smad4 were required for the interaction with β-catenin and protected β-catenin from an ubiquitin-proteasome-dependent degradation. In addition, the formation of the Smad3-Smad4-β-catenin protein complex also mediated β-catenin nuclear translocation. This Smad3-mediated regulatory mechanism of β-catenin protein stability enhanced the activity of β-catenin to activate downstream target genes during chondrogenesis. Our findings demonstrate a novel mechanism between TGF-β and Wnt/β-catenin signaling pathways during chondrocyte development.  相似文献   

17.
18.
The small GTPases regulate many major biological processes in both tumorigenesis and tumor progression such as cell survival, actin cytoskeleton organization, cell polarity and movement. Wnt5a, a non-canonical Wnt family member, is implicated in the activation of small GTPases in breast cancer. We previously demonstrated that Wnt5a signaling stimulates the migration of breast cancer cells MDA-MB-231 via activating RhoA. However, we found here that RhoA activation was not enhanced by Wnt5a in breast cancer cells MCF-7. The conflicting results prompted us to further probe novel small GTPases in response to Wnt5a and investigate the mechanisms whereby cell migration is regulated. We showed here that Wnt5a dose dependently activated Dvl2, Rab35 and Rac1 and subsequently promoted the migration of MCF-7 cells, which was, however, abolished by knocking down Wnt5a expression via small interfering RNA (siRNA) transfection. Dvl2 siRNA significantly decreased background and Wnt5a-induced Rab35/Rac1 activation and, consequently, cell migration. Rab35 short hairpin RNA (shRNA) remarkably inhibited background and Wnt5a-induced Rac1 activation and cell migration. Additionally, blockade of Rac1 activation with Rac1 siRNA suppressed background and Wnt5a-induced cell migration. Co-immunoprecipitation and immunofluorescence assays showed that Dvl2 bound to Rab35 in mammalian cells. Taken together, we demonstrated that Wnt5a promotes breast cancer cell migration via the Dvl2/Rab35/Rac1 signaling pathway. These findings implicate Wnt5a signaling in regulating small GTPases, which could be targeted for manipulating breast cancer cell migration.  相似文献   

19.
The Cullin-RING ligase 4 E3 ubiquitin ligase component Cereblon (CRBN) is a well-established target for a class of small molecules termed immunomodulatory drugs (IMiDs). These drugs drive CRBN to modulate the degradation of a number of neosubstrates required for the growth of multiple cancers. Whereas the mechanism underlying the activation of CRBN by IMiDs is well described, the normal physiological regulation of CRBN is poorly understood. We recently showed that CRBN is activated following exposure to Wnt ligands and subsequently mediates the degradation of a subset of physiological substrates. Among the Wnt-dependent substrates of CRBN is Casein kinase 1α (CK1α), a known negative regulator of Wnt signaling. Wnt-mediated degradation of CK1α occurs via its association with CRBN at a known IMiD binding pocket. Herein, we demonstrate that a small-molecule CK1α agonist, pyrvinium, directly prevents the Wnt-dependent interaction of CRBN with CK1α, attenuating the consequent CK1α degradation. We further show that pyrvinium disrupts the ability of CRBN to interact with CK1α at the IMiD binding pocket within the CRBN–CK1α complex. Of note, this function of pyrvinium is independent of its previously reported ability to enhance CK1α kinase activity. Furthermore, we also demonstrate that pyrvinium attenuates CRBN-induced Wnt pathway activation in vivo. Collectively, these results reveal a novel dual mechanism through which pyrvinium inhibits Wnt signaling by both attenuating the CRBN-mediated destabilization of CK1α and activating CK1α kinase activity.  相似文献   

20.
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号