首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared soil-to-leaf hydraulic conductance (G T), hydraulic conductivity and water-relations characteristics of leaves between reiterated axes (produced by sprouting of suppressed buds) and sequential axes (produced by elongation of terminal buds) on the same branch to investigate how basal reiteration affected the hydraulic architecture of mature Cinnamomum camphora (L.) Sieb. trees. Given similar light conditions, G T was higher for leaves on reiterated shoots than for those on sequential shoots. However, where leaves on sequential shoots received more light, G T was similar to that of leaves on reiterated shoots, suggesting that some compensatory mechanism worked to increase hydraulic conductance to the more distal sequential shoots, which have higher potential for carbon gain. Both xylem- and leaf-specific conductivities were higher for reiterated than sequential shoots. Pressure–volume measurements indicated that leaves on reiterated shoots were more vulnerable to water stress, suggesting that they developed under favorable water status. Because basal reiteration occurs on lower-order branch axes, reiterated shoots have better connectivity to higher conducting xylem and this may contribute to favorable water status. As trees grow larger, hydraulic pathlength and hydraulic resistance both increase as numbers of branch junctions and nodes increase. Our results suggest that basal reiteration improves the hydraulic functional status of mature C. camphora trees by shortening the hydraulic pathway and increasing hydraulic conductance to transpiring leaves.  相似文献   

2.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

3.
We investigated how leaf gas exchange and hydraulic properties acclimate to increasing evaporative demand in mature beech trees, Fagus crenata Blume and Fagus japonica Maxim., growing in their natural habitat. The measurements in the top canopy leaves were conducted using a 16-m-high scaffolding tower over two growing seasons. The daily maxima of net photosynthetic rate for the early growing season were close to the annual maximum value (11.9 mol m–2 s–1 in F. crenata and 7.7 mol m–2 s–1 in F. japonica). The daily maxima of water vapor stomatal conductance were highest in the summer, approximately 0.3 mol m–2 s–1 in F. crenata and 0.15 mol m–2 s–1 in F. japonica. From the early growing season to the summer season, the leaf-to-air vapor pressure deficit increased and the daily minima of leaf water potentials decreased. However, there was no loss of leaf turgor in the summer as a result of effective osmotic adjustment. Both the soil-to-leaf hydraulic conductance per unit leaf area and the twig hydraulic conductivity simultaneously increased in the summer, probably as a result of production of new vessels in the xylem. These results suggest that both osmotic adjustment and increased hydraulic conductance resulted in the largest diurnal maximum of stomatal conductance in the summer, resulting in the lowest relative stomatal limitation on net photosynthetic rate, although the leaf-to-air vapor pressure deficit was highest. These results indicate that even in a mesic forest, in which excessive hydraulic stress does not occur, the seasonal acclimation of hydraulic properties at both the single leaf and whole plant levels are important for plant carbon gain.  相似文献   

4.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

5.
A pressure-clamp technique was devised for the direct measurement of cell-to-cell and apoplasmic components of root hydraulic conductance; the experimental results were analyzed in terms of a theoretical model of water and solute flow, based on a composite membrane model of the root. When water is forced under a constant pressure into a cut root system, an exponential decay of flow is observed, until a constant value is attained; when pressure is released, a reverse water flow out of the root system is observed which shows a similar exponential behavour. The model assumes that the transient flow occurs through a cell-to-cell pathway and the observed decrease is the result of accumulation of solutes in front of the root semi-permeable membrane, whilst the steady-state component results from the movement of water through the parallel apoplasmic pathway. Root conductance components are estimated by fitting the model to experimental data. The technique was applied to the root systems of potted cherry (Prunus avium L.) seedlings; average apoplasmic conductance was 15.5 × 10–9m3· s–1· MPa–1, with values ranging from 12.0 × 10–9 to 18.5 × 10–9m3· s–1· MPa–1; average cell-to-cell conductance was 11.7 × 109 m3· s–1· MPa–1, with values ranging from 8.5 × 10–9 to 15.3 × 10–9 m3 · s–1·MPa–1. Cell-to-cell conductance amounted on average to 43% of total root conductance, with values between 41 and 45%. Leaf specific conductance (conductance per unit of leaf area supported) of the root systems ranged from 2.7 × 10–8 to 5.6 × 10–8 m· s–1·MPa–1, with an average of 3.7 × 10–8 m · s–1·MPa–1. The newly developed technique allows the interaction of mass flow of water and of solutes to be explored in the roots of soil-grown plants.Abbreviations and Symbols A Lp root hydraulic conductance - AaL p a root apoplasmic conductance - AccL p cc root cell-to-cell conductance - Cs(t) concentration of solutes in apical root compartment at time t - Jv flow of water through the root - J v a apoplasmic flow of water - Jv/cc cell-to-cell flow of water - LSC leaf specific conductance of the root system - P root hydrostatic pressure - Pappl applied pressure - s(t) root osmotic pressure at time t - m osmotic pressure of rooting medium - reflection coefficient of root membrane - time constant of cell-to-cell flow decay This research was funded within the EC Project Long-term effects of CO2-increase and climate change on European forests (LTEEF) (EV5V-CT94-0468); F.M. was supported by a Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica — British Council agreement (Project The ecological significance of cavitation in woody plants); M.C. was supported by a Consiglio Nazionale delle Ricerche — British Council agreement. We gratefully thank Prof. P.G. Jarvis (University of Edinburgh, UK) for revising an earlier version of this paper and Prof. E. Steudle (University of Bayreuth, Germany) for helpful comments.  相似文献   

6.
Seasonal changes in minimum leaf conductance to water vapor (gmin), an estimate of cuticular conductance, and photosynthetic gas exchange in two co-occurring oak species in north-east Kansas (USA) were examined to determine if leaf gas exchange characteristics correlated with differences in tree distribution. Bur oak (Quercus macrocarpa Michx.) is more abundant in mesic gallery forest sites, whereas chinquapin oak (Quercus muehlenbergii Englm.) is more abundant in xeric sites. Early, during leaf expansion, gmin was significantly lower in chinquapin oak than in bur oak, though midday water potentials were similar. After leaves had fully expanded, gmin decreased to seasonal minimum values of 4.57 (±0.274) mmol m-2 s-1 in bur oak, and 2.66 (±0.156) mmol m-2 s-1 in chinquapin oak. Water potentials at these times were significantly higher in chinquapin oak. As leaves were expanding, photosynthesis (Anet) was significantly higher in chinquapin oak than in bur oak. Later in the growing season, Anet and gleaf increased dramatically in both species, and were significantly higher in bur oak relative to chinquapin oak. We concluded that bur and chinquapin oak have a number of leaf gas exchange characteristics that minimize seasonal water loss. These characteristics are distinct from trees from more mesic sites, and are consistent with the distribution patterns of these trees in tall-grass prairie gallery forests.  相似文献   

7.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

8.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

9.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

10.
Armillaria luteobubalina produces air pores in culture. They consist of two parts: a basal region of tissue elevated to form a mound covered with a rind continuous with that of the colony, but perforated; and an apical region of long parallel hyphae, cemented together by scattered patches of extracellular material. This forms a hydrophobic structure that is elevated above the general level of the mycelial crust and does not easily become waterlogged. Air pores develop near the inoculum plug shortly after inoculation, arising directly from the mycelium, and rhizomorphs are initiated from them. The air pore contains a complex system of gas space connecting the atmosphere with the central canal of each rhizomorph. The tissue beneath the melanised colony crust also contains gas space, especially near air pores. This is also connected with the gas space of each rhizomorph and of each air pore. Measurements with oxygen electrodes show that air pores and their associated rhizomorphs conduct oxygen. The average oxygen conductance of a group of air pores with associated rhizomorphs, within agar blocks, but with rhizomorph apices cut off, was about 700 × 10−12 m3 s−1, equivalent to about 200 × 10−12 m3 s−1 for each air-pore. We conclude that the air pores conduct oxygen into the gas space below the pigmented mycelium of the colony, where the rhizomorphs - which also conduct oxygen - originate. A. luteobubalina thus has a complex aerating system which allows efficient diffusion of oxygen into rhizomorphs, and this is likely to facilitate extension of inoculum into low-oxygen environments.  相似文献   

11.
A multi-functional enzyme ICChI with chitinase/lysozyme/exochitinase activity from the latex of Ipomoea carnea subsp. fistulosa was purified to homogeneity using ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. The enzyme is glycosylated (14–15%), has a molecular mass of 34.94 kDa (MALDI–TOF) and an isoelectric point of pH 5.3. The enzyme is stable in pH range 5.0–9.0, 80 °C and the optimal activity is observed at pH 6.0 and 60 °C. Using p-nitrophenyl-N-acetyl-β-d-glucosaminide, the kinetic parameters Km, Vmax, Kcat and specificity constant of the enzyme were calculated as 0.5 mM, 2.5 × 10−8 mol min−1 μg enzyme−1, 29.0 s−1 and 58.0 mM−1 s−1 respectively. The extinction coefficient was estimated as 20.56 M−1 cm−1. The protein contains eight tryptophan, 20 tyrosine and six cysteine residues forming three disulfide bridges. The polyclonal antibodies raised and immunodiffusion suggests that the antigenic determinants of ICChI are unique. The first fifteen N-terminal residues G–E–I–A–I–Y–W–G–Q–N–G–G–E–G–S exhibited considerable similarity to other known chitinases. Owing to these unique properties the reported enzyme would find applications in agricultural, pharmaceutical, biomedical and biotechnological fields.  相似文献   

12.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

13.
The kinetics of fungal peroxidase-catalyzed phenolic compounds (PCs) oxidation was investigated in presence of acetylenic-based surfactant Dynol 604 at pH 5.5 and 25 °C. It was shown that the presence of ppm concentrations of surfactant did not influence initial rate of PCs oxidation. The calculated apparent bimolecular rate constants were (1.8 ± 0.2) × 105 M−1 s−1, (1.4 ± 0.4) × 107 M−1 s−1, (1.30 ± 0.06) × 107 M−1 s−1 and 1.1 × 108 M−1 s−1 for phenol, 1-naphthol, 2-naphthol and 1-hydroxypyrene, respectively.During an extensive substrates conversion Dynol 604 showed diverse action for different PCs. The oxidation of phenol practically did not change, whereas the surfactant enhanced the conversion of 1- and 2-naphthol and 1-hydroxypyrene in dose response manner. The results accounted by a scheme, which contains a stadium of enzyme inhibition by oligomeric PC oxidation products. The action of the surfactant was explained by avoidance the enzyme active center clothing with the oligomers. The results acquired demonstrate a remarkable increase of substrates conversion in the presence of Dynol 604.  相似文献   

14.
A biotinylated mannotriose (Man3-bio) was dispersively immobilized in the matrix of biotinylated lactose (Gal-Glc-bio) on a streptavidin-covered, 27-MHz quartz crystal microbalance (QCM), and binding kinetics of concanavalin A (Con A) to Man3-bio in the Gal-Glc-bio matrix could be obtained from frequency decreases (mass increases) of the QCM. Association constants (Ka) and binding and dissociation rate constants (kon and koff) could be determined separately as the 1:1 and 1:2 bindings of Con A to Man3-bio on the surface. When Man3-bio was immobilized with content of 1 to 5 mol% in the matrix, the 1:1 binding of Con A to Man3-bio was obtained as Ka = (4 ± 1) × 106 M−1, kon = (4 ± 1) × 104 M−1 s−1, and koff = (12 ± 2) × 10–3 s−1. On the contrary, when Man3-bio was immobilized with content of 20 to 100 mol% in the matrix, the 1:2 binding of Con A to Man3-bio was obtained as Ka = (14 ± 2) × 106 M−1, kon = (14 ± 2) × 104 M−1 s−1, and koff = (7 ± 2) × 10–3 s−1. Thus, Ka for the 1:2 binding was 10 times larger than that for the 1:1 binding, with a three times larger binding rate constant (kon) and a three times smaller dissociation rate constant (koff). This is the first example to obtain separate kinetic parameters for the 1:1 and 1:2 bindings of lectins to carbohydrates on the surface.  相似文献   

15.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

16.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

17.
Quantitative detection of the oil-degrading bacterium Acinetobacter sp. strain MUB1 was performed using the SoilMaster DNA Extraction Kit (Epicentre, Madison, Wisconsin) and hybridization probe based real-time PCR. The detection target was the alkane hydroxylase gene (alkM). Standard curve construction showed a linear relation between log values of cell concentrations and real-time PCR threshold cycles over five orders of magnitude between 5.4±3.0×106 and 5.4±3.0×102 CFU ml−1 cell suspension. The detection limit was about 540 CFU ml−1, which was ten times more sensitive than conventional PCR. The quantification of Acinetobacter sp. strain MUB1 cells in soil samples resulted in 46.67%, 82.41%, and 87.59% DNA recovery with a detection limit of 5.4±3.0×104 CFU g−1 dry soil. In this study, a method was developed for the specific, sensitive, and rapid quantification of the Acinetobacter sp. strain MUB1 in soil samples.  相似文献   

18.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

19.
The effects of small-scale turbulence on two species of dinoflagellates were examined in cultures where the turbulent forces came randomly from all directions and were intermittent both spatially and temporally; much like small-scale turbulence in the ocean. With Lingulodinium polyedrum (Stein) Dodge (syn. Gonyaulax polyedra), division rate increased linearly (from 0.35 to 0.5 per day) and the mean cross-sectional area (CSA) decreased linearly (from 1100 to 750 μm2) as a function of the logarithmic increase in turbulence energy dissipation rate (). These effects were noted when values increased between 10−8 and 10−4 m2 s−3. However, when increased to 10−3 m2 s−3, division rate sharply decreased and mean CSA increased. Over the same range of , Alexandrium catenella (Wheedon and Kofoid) Balech had its division rate decrease linearly (from 0.6 to 0.45 per day) and its CSA increase linearly (from 560 to 650 μm2) as a function of the logarithmic increase in . Even at the highest examined (10−3 m2 s−3), which may be unrealistically high for their ambits, both L. polyedra and A. catenella still had fairly high division rates, 0.2 and 0.45 per day, respectively. Turbulence strongly affected chain formation in A. catenella. In non-turbulent cultures, the mode was single cells (80–90% of the population), but at of 10−5 to 10−4 m2 s−3, the mode was 8 cells per chain. At the highest (10−3 m2 s−3), the mode decreased to 4 cells per chain. The vertical distributions of A. catenella populations in relation to hydrographic flow fields were studied in the summers of 1997 and 1998 in East Sound, Washington, USA (latitude 48°39′N, 122°53′W). In both summers, high concentrations of A. catenella were found as a subsurface bloom in a narrow depth interval (2 m), where both current shear and turbulence intensity were at a minimum. Other researchers have shown that A. catenella orients its swimming in shear flows, and that swimming speed increases with chain length. These responses, when combined with our observations, support a hypothesis that A. catenella actively concentrates at depths with low turbulence and shear.  相似文献   

20.
In pedunculate oak (Quercus robur L.) the architecture of the crown is strongly influenced by age and vigour of the tree. In old oak trees cladoptosis is a major mechanism on the transformation of crown architecture. Although it can be seen quite regularly, the causes and timing of shedding of twigs as well as the quantity of affected branches remain unclear. Because abscission is often used as an indicator of reduced vigour or stress in the assessment of stand and ornamental tree health, it deserves detailed investigation, especially in the context of oak decline. We studied the inter- and intra-annual variation of abscission in six stands across the eastern part of Germany in order to identify possible triggering events and controlling factors of abscission.On average, the number of twigs abscised per year increased from 1999 to 2001. While in 1999 approximately 100 abscised twigs per m2 per year were shed, this number increased to 250 per m2 in 2001. The majority of twigs was actively shed, a significant proportion of the remaining twigs was partly abscised. Only a small part of the abscised twigs had leaves attached to them. From June to September 20 per cent of the twigs had leaves, in the remaining months of the year less than 10 per cent.The analysis of almost 30,000 twig fragments over the course of 3 years demonstrated at least partial control by the tree of the process of abscission. The loss of the terminal bud and the formation of a male flower are traits correlated with abscission.Our data do not support the widely held belief that cladoptosis is mainly an immediate reaction to drought stress that reduces transpiring leaf area. The proportion of leafy twigs was quite low and the main peak of abscission occurred in late autumn, thus having little immediate effect on transpiration. In addition, we observed a time lag of 3 weeks between the onset of drought stress and increased levels of abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号