首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two defective adenovirus-simian virus 40 hybrids which contain the entire SV40 genome (Ad2++HEY and Ad2++LEY)2 have been isolated. Upon infection of cells permissive for SV40 both hybrids give rise to infectious SV40 virions, but with markedly different efficiencies. In the case of Ad2++HEY nearly all cells infected with a hybrid particle yield SV40 progeny, whereas in the case of Ad2++LEY infectious SV40 is produced in only about one in 104 cells infected with hybrid particles. The structures of the DNA molecules in the Ad2++HEY and Ad2++LEY populations were examined using electron microscope heteroduplex methods. Both populations were found to be heterogeneous. Ad2++HEY contained three hybrids (HEY-I, HEY-II, and HEY-III) whose genomes differed only in their content of SV40 DNA (0.45 ± 0.02, 1.43 ± 0.04, and 2.39 ± 0.09 SV40 genomes, respectively). Ad2++LEY contained two hybrids (LEY-I and LEY-II), which also differed only in their content of SV40 DNA (0.03 ± 0.01 and 1.05 ± 0.01 SV40 genomes, respectively). In those hybrids which contained more than one complete SV40 genome (HEY-II, HEY-III, LEY-II) the excess SV40 DNA was shown to be organized as a tandem repetition. These data suggest that the various hybrid genomes within each population are interconvertible by recombination events, which insert or excise an SV40 genome. It is proposed that HEY-II and HEY-III yield infectious SV40 with higher efficiency than LEY-II because their SV40 DNA segments contain longer tandem repetitions; thus, the probability of an intramolecular recombination event which results in excision of an SV40 genome is greater.  相似文献   

4.
5.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

6.
Previous work has shown that cells infected with the non-defective adenovirus 2-simian virus 40 hybrid viruses, Ad2+ND2 and Ad2+ND4 synthesize more than one SV404 large T antigen-related protein. These proteins overlap in amino acid sequence and have their carboxy-terminal sequences in common (Mann et al., 1977). We have characterized the messenger RNAs coding for these SV40-specific proteins. By translating in vitro SV40-specific mRNA isolated from cells infected with these viruses we have shown that each SV40-specific protein can incorporate 35S-labeled formyl methionine at its N-terminus donated by [35S]-fmet-tRNAfmet, demonstrating that each protein results from a de novo initiation event. Furthermore, analysis of the N-terminal tryptic peptides of these proteins indicates that each protein has a unique N-terminal peptide and therefore a unique initiation site for protein synthesis, with the possible exception of the 74,000 and 95,000 molecular weight proteins, which may have the same N-terminal sequence. Therefore, these proteins cannot be derived by proteolytic cleavage of a large precursor protein.The messenger activities for many of the hybrid virus proteins can be resolved by gel electrophoresis, demonstrating the presence of multiple SV40-specific mRNA species. This result is consistent with the possibility that each SV40-specific protein is coded by a distinct species of RNA.  相似文献   

7.
Human cellular sequences detectable with adenovirus probes   总被引:1,自引:0,他引:1  
Previous studies suggesting homology between human cellular DNA and the DNAs from adenovirus types 2 and 5 are extended in the present paper. A clone (ChAdh), isolated from a human genomic DNA library using an adenovirus probe, hybridized to discrete regions of adenovirus 2 DNA, including part of the transforming genes E1a and E1b, as well as to repeated sequences within human DNA. The E1a and E1b genes both hybridize to the same 300 base pair Sau3AI fragment within ChAdh although there is no obvious homology between E1a and E1b. The Ad 2 E1a gene was also used as a probe to screen other cellular DNAs to determine whether repeated sequences detectable with Ad 2 DNA probes were conserved over long evolutionary periods. Hybridization was detected to the genomes of man, rat, mouse and fruit fly, but not to those of yeast and bacteria. In addition to a smear hybridization, discrete fragments were detected in both rodent and fruit fly DNAs. The experiments reported suggest the existence of two different types of cellular sequences detected by Ad 2 DNA: (1) repeated sequences conserved in a variety of eukaryote genomes and (2) a possible unique sequence detected with an E1a probe different from that responsible for hybridization to repeated sequences. This unique sequence was detected as an EcoRI fragment in mouse DNA and had a molecular size of about 8.8 kb.  相似文献   

8.
L E Ling  M M Manos    Y Gluzman 《Nucleic acids research》1982,10(24):8099-8112
The nucleotide sequences of six Ad2-SV40 junctions from three Ad2-SV40 hybrid viruses (Ad2++HEY, Ad2++LEY and Ad2+D1) were determined. Comparison of parental adenovirus 2 and SV40 DNA sequences with the sequence at the Ad2-SV40 junctions revealed that 5 out of 6 junctions are abrupt transitions from Ad2 to SV40 DNA, and in one case (Ad2++LEY, right junction) there is an additional nucleotide at the junction, which cannot be ascribed to either DNA. Ad2++HEY and Ad2+D1 right junctions are identical and Ad2++LEY and Ad2+ND4 left junctions are identical, a result that strongly suggests these Ad2-SV40 hybrids arose by recombination between the linear Ad2 DNA and circular SV40 DNA, followed by recombination between Ad2 DNA and SV40 DNA present in the Ad2-SV40 hybrid DNA. The unambiguous transition of Ad2 DNA into SV40 DNA at the junction sites is an example of recombination events which have apparently occurred without any homology at the recombination site.  相似文献   

9.
10.
A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2(+)ND(1) virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2(+)ND(1) molecule. From the results obtained, it was estimated that 1% of the Ad2(+)ND(1) DNA consists of SV40 nucleotide sequences.  相似文献   

11.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

12.
Sequences from the beginning of the fiber messenger RNA of adenovirus-2.   总被引:3,自引:0,他引:3  
Small restriction fragments, from around co-ordinate 86.6 on the adenovirus-2 genome, have been used as primers for direct DNA sequence analysis by Sanger's (Sanger et al., 1977) chain termination method with Ad22 DNA as template. The genomic sequences obtained have been compared with sequences deduced using fiber messenger RNA from Ad2 or Ad2+ ND5-infected cells as template. With one primer, Hha 54, the sequences complementary to mRNA match those of the genome for 10 nucleotides but then differ from those found on the genome because this primer hybridizes near the point at which the leader sequence becomes joined to the main body of fiber mRNA. Using Ad2+ ND5 fiber mRNA as template, the sequence beyond the point of divergence matches the known sequence of the third leader component of one of the late Ad2 mRNAs, that encoding the hexon polypeptide. With Ad2 fiber mRNA, a heterogeneous sequence continuation is found, in accordance with earlier findings that two major species of fiber mRNA are present, which differ in the nature of the leader component joined to the main body of fiber mRNA (Chow &; Broker, 1978). Nevertheless, the data suggest that both leader components appear to become joined to the same nucleotide at the start of the main body of fiber mRNA.The AUG codon, which probably encodes the N-terminus of the fiber polypeptide, occurs just two nucleotides beyond the point at which these leader segments become spliced to the main body of fiber mRNA.  相似文献   

13.
Nuclei of KB cells harvested at late stages of productive infection with adenovirus type 2 (Ad2) harbor RNA molecules which measure up to 13 μm in length, as determined by electron microscopy of denatured RNA. While some of the molecules display features of secondary structure that are characteristic for precursor rRNA, our interest was in those showing almost no intramolecular folding. When hybridized to double-stranded viral DNA under conditions which favor RNA:DNA duplex formation, nuclear AD2 RNA displaces the homologous DNA region and generates R loop structures whose size is proportional to the length of the hybridizing RNA. Slowly sedimenting RNA forms small R loops, whereas RNA of high sedimentation velocity generates loops that span a large proportion of the DNA length. Using SV40 sequences within Ad2+ND4 hybrid DNA as a position marker, we oriented many of the R loops on the conventional Ad2 map. Our analysis was restricted to the most abundant sequences of late Ad2 nuclear RNA participating in R loop formation. A small but significant proportion of large RNA generates loops between map positions 0.3 and 0.9. The much more frequent RNA of intermediate size (although larger than mRNA) hybridizes with midpoints near map positions 0.55 and 0.88 — that is, near the gene locations for hexon and fiber. Our findings are compatible with the idea that the nuclear RNAs visualized in this study are intermediates in a processing pathway leading to mature forms of late Ad2 mRNA.  相似文献   

14.
Ad2(+)ND(1), a nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, has been previously shown to contain a small segment of the SV40 genome covalently linked to Ad2 deoxyribonucleic acid (DNA). The SV40 portion of this hybrid virus has been characterized by relating the SV40-specific ribonucleic acid (RNA) sequences transcribed from the Ad2(+)ND(1) DNA to those transcribed from the DNA of SV40 itself. RNA-DNA hybridization-competition studies indicate that the SV40 component of Ad2(+)ND(1) consists of some, but not all, of that part of the SV40 genome which is transcribed early, i.e., prior to viral DNA replication, in SV40 lytic infection.  相似文献   

15.
Deleted genomes of simian virus 40 have been constructed by enzymatic excision of specific segments of DNA from the genome of wild-type SV402. For this purpose, a restriction endonuclease from Hemophilus influenzae (endo R · HindIII) was used. This enzyme cleaves SV40 DNA into six fragments, which have cohesive termini. Partial digest products were separated by electrophoresis in agarose gel and subsequently cloned by plaque formation in the presence of complementing temperature-sensitive mutants of SV40. Individual deletion mutants generated in this way were mapped by analysis of DNA fragments produced by endo R · Hind digestion of their deleted genomes, and by heteroduplex mapping. Two types of deletions were found: (1) “excisional” deletions, in which the limits of the deleted segment corresponded to HindIII cleavage sites, and (2) “extended” deletions, in which the deleted segment extended beyond HindIII cleavage sites. Excisionally deleted genomes presumably arose by cyclization of a linear fragment via cohesive termini generated by endo R · HindIII whereas genomes with extended deletions probably were generated by intramolecular recombination near the ends of linear fragments. Of the nine mutants analyzed, two had deletions in the “early” region of the SV40 genome, six had deletions in the “late” region, and one had a deletion that spanned both regions.  相似文献   

16.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

17.
Certain biophysical characteristics of the DNA from each of the five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses (Ad2(+)ND(1), Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), Ad2(+)ND(5)) have been determined. The guanine plus cytosine content varied from 55 to 57% and was not significantly different from that of nonhybrid Ad2 (56%), and the hybrid DNA molecules had mean molecular lengths which were similar to that of the standard, Ad2. The Ad2 and SV40 components of each hybrid were linked by alkali-resistant, presumably covalent bonds. The percentage of SV40 DNA in each hybrid virus was determined by hybridization with SV40 complementary RNA in a calibrated system. The results indicate that each hybrid virus DNA contains a different percentage of SV40 nucleotide sequences. The estimated size of the SV40 DNA component varies from 48,000 daltons for Ad2(+)ND(3) to 840,000 daltons for Ad2(+)ND(4), the latter being equivalent to between one-fourth and one-third of the SV40 genome.  相似文献   

18.
19.
The DNAs of the five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses contain overlapping segments of the early region of wild-type SV40 DNA. The complementary DNA strands of these five viruses have been separated with synthetic polyribonucleotides in isopycnic cesium chloride gradients. The relative amounts of early and late SV40 template in the DNA of each virus were determined by RNA-DNA hybridization with late lytic SV40 RNA, which contains sequences complementary to both templates. From the distribution of early and late templates in the five overlapping SV40 segments, we conclude that either the entire early region of SV40 is symmetrically transcribed in vivo, or, more probably, that the early SV40 templates are not contiguous.  相似文献   

20.
To study homologous recombination between repeated sequences in an in vitro simian virus 40 (SV40) replication system, we constructed a series of substrate DNAs that contain two identical fragments of monkey alpha-satellite repeats. Together with the SV40-pBR322 composite vector encoding Apr and Kmr, the DNAs also contain the Escherichia coli galactokinase gene (galK) positioned between two alpha-satellite fragments. The alpha-satellite sequence used consists of multiple units of tandem 172-bp sequences which differ by microheterogeneity. The substrate DNAs were incubated in an in vitro SV40 DNA replication system and used to transform the E. coli galK strain DH10B after digestion with DpnI. The number of E. coli galK Apr Kmr colonies which contain recombinant DNAs were determined, and their structures were analyzed. Products of equal and unequal crossovers between identical 172-bp sequences and between similar but not identical (homeologous) 172-bp sequences, respectively, were detected, although those of the equal crossover were predominant among all of the galK mutant recombinants. Similar products were also observed in the in vivo experiments with COS1 cells. The in vitro experiments showed that these recombinations were dependent on the presence of both the SV40 origin of DNA replication and SV40 large T antigen. Most of the recombinant DNAs were generated from newly synthesized DpnI-resistant DNAs. These results suggest that the homologous recombination observed in this SV40 system is associated with DNA replication and is suppressed by mismatches in heteroduplexes formed between similar but not identical sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号