首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. M. Rendel 《Genetics》1976,83(3):573-581
A section of the third chromosome of D. melanogaster some 25 to 40 centimorgans long including sr was transferred from a wild-type stock selected by Latter for high scutellar bristle number into a scute stock with a large number of scutellar bristles. This segment is shown to have a large effect on the bristle numbers of wild-type flies, to reduce the strength of canalization of the scute phenotype at 4 bristles, to have little, if any, effect on bristle numbers of scute flies with less than 4 bristles but to increase the number of flies with 5 and 6 scutellar bristles in scute stocks that normally have a large number of flies with 4 bristles. It is suggested that this segment in unselected chromosomes contains a gene that regulates bristle number by repressing the scute locus and that Latter has selected a mutant of the regulator which fails to repress the action of the scute locus.  相似文献   

2.
Summary The arrangement of bristles on a leg segment of the fruitflyDrosophila melanogaster was studied in various mutants that have abnormal numbers of bristles on this segment. Eighteen mutations at six different genetic loci were analyzed, plus five double or triple mutant combinations. Recessive mutations at theachaete-scute locus were found to affect distinct groups of bristles:achaete mutations remove mechanosensory bristles, whereasscute mutations remove mainly chemosensory bristles. Mechanosensory bristles remain uniformly spaced along the longitudinal axis unless their number decreases below a certain threshold, suggesting that spacing is controlled by cell interactions that cannot function when bristle cells are too far apart. Above a certain threshold, bristle spacing and alignment both become irregular, perhaps due to excessive force from these same interactions. Chemosensory bristles occupy definite positions that are virtually unaffected by removal of individual bristles from the array. Extra chemosensory bristles develop only near the six normal sites. At two of the six sites the multiple bristles tend to exhibit uniform longitudinal spacing — a property confined to mechanosensory bristles in wild-type flies. To explain the various mutant phenotypes the following scheme is proposed, with different mutations directly or indirectly affecting each step: (1) spots and stripes are demarcated within the pattern area, (2) one bristle cell normally arises within each spot, multiple bristle cells within each stripe, (3) incipient bristle cells inhibit neighboring cells from becoming bristle cells, and (4) the bristle cells within each stripe become aligned to form rows and then repel one another to generate uniform spacing.  相似文献   

3.
4.
Summary The lineages of cells on the second-leg basitarsus ofDrosophila melanogaster were analyzed by examining gynandromorphs andMinute mosaics. Bracts lie proximal to bristles on the adult basitarsus, yet bract precursor cells were found to originate lateral to bristle precursor cells. In 6 of the 8 longitudinal rows of bristles on this segment, the bract cells arise ventral to the bristle cells; in the others they arise dorsally. The lateral cell origins are interpreted as reflecting a pattern of lateral cell movements associated with evagination of the leg disc. An unusual discrepancy was observed in the relative frequencies of male vs. female bracts and bristles in gynandromorphs. The discrepancy suggests that there is a cell-autonomous sexual difference in either the time at which cells begin moving during evagination or the speed with which they move.On the basis of the results, it is reasoned that the bristle pattern of the basitarsus does not originate in its final form. Prior to evagination, the bristle cells of each row are apparently closer together than in the final pattern, and the rows are farther apart. Evidence is presented which suggests that the bristle cells of each row may originally be arranged in a jagged line which is later straightened by cell movements.The two locations where the anterior/posterior compartment boundary of the second leg passes through the basitarsus were found to vary relative to the bristle pattern. If this boundary is assumed to be a fixed line of positional values, then the extent of the observed variability — which is estimated to be ± 1 or 2 cell diameters — provides a measure of the precision of patterning around the circumference.  相似文献   

5.
Mesosternal (MS) bristles in Drosophila are a pair of machrochaetae found at the sternal end of the sternopleural (STP) microchaetae, and are thought to be invariable. In a closely related drosophilid genus, Zaprionus, their number is four and, in contrast to Drosophila, they show interspecific and intraspecific variability. The genetic basis of MS bristle number variability was studied in Z. indianus, the only cosmopolitan species of the genus. The trait responded rapidly to selection and two lines were obtained, one lacking any bristles (0-0) and the other bearing the normal phenotype (2-2). Other symmetrical phenotypes, (1-1) and (3-3), could also be selected for, but with lesser success. By contrast, STP bristle number did not vary significantly between the two lines (0-0) and (2-2), revealing its genetic independence from MS bristle number. Reciprocal crosses between these two lines showed that MS bristle number is mainly influenced by a major gene on the X chromosome (i.e. F1 males always resembled their mothers) with codominant expression (i.e. heterozygous F1 females harboured an average phenotype of 2 bristles). However, trait penetrance was incomplete and backcrosses revealed that this variability was partly due to genetic modifiers, most likely autosomal. The canalization of MS bristle number was investigated under different temperatures, and the increased appearance of abnormal phenotypes mainly occurred at extreme temperatures. There was a bias, however, towards bristle loss, as shown by a liability (developmental map) analysis. Finally, when ancestral and introduced populations were compared, the latter were far less stable, suggesting that genetic bottlenecks may perturb the MS bristle number canalization system. MS bristle number, thus, appears to be an excellent model for investigating developmental canalization at both the quantitative and the molecular level.  相似文献   

6.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. Differences in the spatial expression of the proneural gene scute correlate with the positions of bristles in those species looked at so far. However, the examination of a number of genes encoding trans-regulatory factors, such as pannier, stripe, u-shaped, caupolican and wingless, indicates that they are expressed in conserved domains on the prospective notum. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera, and that many differences are likely to be due to changes in cis-regulatory sequences of scute. In contrast, in Anopheles gambiae, a basal species with no stereotyped bristle pattern, the expression patterns of pannier and wingless are not conserved, and expression of AgASH, the Anopheles proneural gene, does not correlate in a similar manner with the bristle pattern. We discuss the possibility that independently acting cis-regulatory sequences at the scute locus may have arisen in the lineage giving rise to cyclorraphous flies.  相似文献   

7.
Results are presented of 135 generations of selection for high scutellar bristle number in two lines M and M3 derived from the same original mating of one female with 5 bristles by one male with 4 bristles, the latter being the wild-type canalised phenotype. Results are also given of two relaxed lines per line and of a reselection line M2 derived from the first relaxed line of line M which had regressed almost to base population level. The effect of introducing the sc(1) allele into the M and M3 selected backgrounds was studied at generations 39-44. At the end of selection the effect of an extra dose of sc(+) was also studied in males of all selected backgrounds. The correlated responses in abdominal bristles were followed in all lines.-Considering their common origin, the selection lines differed markedly in pattern of scutellar response and in most other aspects observed, namely correlated responses in abdominals and p.c. scutellars, sex differences, and behaviour on relaxation. Selection limits for scutellar bristles in lines M and M2 were equal to or greater than the most extreme reported in the literature.-The probit span of the canalised 4 bristle class decreased in each selection line as the mean scutellar bristle number increased, and increased again in the relaxed lines as the mean bristle number decreased. In the context of an hypothesis that canalisation at 4 bristle is due to regulation of the scute locus, this result is now interpreted as being due mainly to selection for poor regulators of sc(+), in contrast to a previous interpretation that only the minor gene background was altered by selection, the canalisation (regulation) genotype not being affected.-Introducing the sc(1) allele into the selected backgrounds M and M3 showed a reduced effect on sc(1) flies compared with sc(+) flies, and an interaction of sc(1) and sc(+) with selected background. sc(1) flies had about the same number of bristles in both backgrounds though the mean of sc(+) flies in line M was about 3sigma higher than in line M3. Dominance of sc(+) to sc(1) was reduced slightly in M3. However, the effect of an extra dose of sc(+) at the end of selection was about the same as in unselected in all lines, so the first or dominance level of regulation of the scute locus was not significantly affected by selection, though the second or canalisation level of regulation was.-A large positive correlated response in abdominal bristles occurred in all lines. The response in line M was about twice that in M2 and M3 and was in fact as large as can be obtained from direct selection on abdominals. In line M some genes may have been selected with a proportionately greater effect on abdominals than on scutellars. This is supported by the further observation in line M that the abdominal scores of flies with particular scutellar bristles scores increased as the scutellar mean increased. An attempt was made to apply to these results Rendel's (1962) model of competition between scutellars and abdominals for common bristle-making resources. This could not be done satisfactorily mainly because the assumptions in the model about the similarity of effects in scute and wild-type flies were not met in the present material.  相似文献   

8.
Lai EC 《Genetics》2003,163(4):1413-1425
Tufted is a classical Drosophila mutant characterized by a large number of ectopic mechanosensory bristles on the dorsal mesothorax. Unlike other ectopic bristle mutants, Tufted is epistatic to achaete and scute, the proneural genes that normally control the development of these sensory organs. In this report, I present genetic and molecular evidence that Tufted is a gain-of-function allele of the proneural gene amos that ectopically activates mechanosensory neurogenesis. I also systematically examine the ability of the various proneural bHLH proteins to cross-activate each other and find that their ability to do so is in general relatively limited, despite their common ability to induce the formation of mechanosensory bristles. This phenomenon seems instead to be related to their shared ability to activate Asense and Senseless.  相似文献   

9.
Summary The development of a leg segment of the fruitflyDrosophila melanogaster was analyzed in order to determine whether the orderliness of the segment's bristle pattern originates via waves of cellular interactions, such as those that organize the retina. Fly development was perturbed at specific times by either teratogenic agents (gamma rays, heat shock, or the drug mitomycin C) or temperature-sensitive mutations (l(1)63, l(1) Notchts1, orl(1) shibire ts1 ), and the resulting abnormalities (e.g., missing or extra structures) were mapped within the pattern area. If bristles develop in a linear sequence across the pattern, then they should show sensitivity to perturbations in the same order, and wavefronts of cuticular defects should result. Contrary to this prediction, the maps reveal no evidence for any directional waves of sensitivity. Nevertheless, other clues were uncovered as to the nature and timing of patterning events. Chemosensory bristles show earlier sensitivities than mechanosensory bristles, and longer bristles precede shorter ones. The types and sequence of cuticular abnormalities imply the following stages of bristle pattern development: (1) scattered inception of bristle mother cells, each surrounded by an inhibitory field, (2) alignment of the mother cells into rows, (3) differential mitoses, (4) assignment of cuticular fates to the mitotic progeny, (5) polytenization of the bristle cells, (6) fine-tuning adjustments in bristle spacing, and (7) signalling from bristle cells to adjacent epidermal cells, inducing them to form bracts.  相似文献   

10.
P. Heitzler  M. Haenlin  P. Ramain  M. Calleja    P. Simpson 《Genetics》1996,143(3):1271-1286
A genetic and phenotypic analysis of the gene pannier is described. Animals mutant for strong alleles die as embryos in which the cells of the amnioserosa are prematurely lost. This leads to a dorsal cuticular hole. The dorsal-most cells of the imagos are also affected: viable mutants exhibit a cleft along the dorsal midline. pannier mRNA accumulates specifically in the dorsal-most regions of the embryo and the imaginal discs. Viable mutants and mutant combinations also affect the thoracic and head bristle patterns in a complex fashion. Only those bristles within the area of expression of pannier are affected. A large number of alleles have been studied and reveal that pannier may have opposing effects on the expression of achaete and scute leading to a loss or a gain of bristles.  相似文献   

11.
Mallomonas splendens (G. S. West) Playfair has a cell covering of siliceous scales and bristles. Interphase cells bear four anterior and four posterior bristles that each articulate, at their flexed basal ends via a complex of labile fibers (the fibrillar complex), on a specialized body scale (a base-plate scale). Body scales, base-plate scales and bristles are formed independently of each other and at different times in silica deposition vesicles (SDVs) that are associated with one of the two chloroplasts. The fine structure of scale and bristle morphogenesis in M. splendens agrees with that previously described for Synura and Mallomonas. Four new posterior bristles are formed at late interphase with their basal ends towards the cell posterior. The fibrillar complex is formed in situ on the bristle in the SDV. Mature bristles are secreted one by one onto the surface of the protoplast, beneath the layer of body scales, where the basal ends of the bristles adhere to the plasma membrane via the fibrillar complex. The extrusion of posterior bristles and their deployment onto the cell surface was monitored with video. A fine cellular protuberance accompanies the bristles as they are extruded from beneath the scale layer with their basal ends leading. When distant from the cell, the basal ends of the bristles appear attached to the protuberance, possibly by way of their fibrillar complexes. Once bristles are fully extruded, and their tips free in the surrounding environment, the bristle bases are drawn back to the posterior apex of the cell, apparently by the now shortening protuberance. Thus a 180° reorientation of the posterior bristles has been effected outside the cell. Thin-sections of cells that are extruding bristles show a threadlike, cytoplasmic extension of the cell posterior which may be analogous to the protuberance seen in live cells. Four new posterior base-plate scales are secreted after the bristles have reoriented. Scanning electron microscopy indicates that the fibrillar complex is involved in positioning the bristles onto their respective base-plate scales. Anterior bristles are formed in new daughter cells in the same orientation as the posterior bristles; thus they are extruded tip first and no reorientation is required.  相似文献   

12.
Summary The bristle pattern of the second-leg basitarsus inDrosophila melanogaster was studied as a function of the number and size of the cells on this segment in well-fed and starved wild-type flies, in triploid flies, and in two mutants (dachs andfour-jointed) that have abnormally short basitarsi. The second-leg basitarsi of well-fed, wild-type flies from 22 otherDrosophila species were studied in a similar manner. There are typically 8 longitudinal rows of evenly-spaced bristles on the second-leg basitarsus, and in each row the number of bristles was consistently found to vary in proportion to the estimated number of cells along the segment, and the interval between bristles was found to vary in proportion to the average cell diameter on the segment. These correlations are interpreted to mean that the spacing of the bristles within each row is controlled developmentally, whereas the number of bristles is not. The interval between bristles is evidently measured either as a fixed number of cells or as a distance which indirectly depends upon cell diameter.  相似文献   

13.
14.
Complex bristle types formed by species in the genus Mallomonas include those with helmet or lance-shaped apices. The ornamentation on each side of the helmet has been thought to be equivalent or symmetrical, whereas on a lance-shaped bristle an expanded portion folds over one side of the shaft to form an asymmetrical structure. We describe, for the first time, helmet bristles with a distinctly asymmetrical design, also formed by the folding of a siliceous membrane over one side of the helmet. We postulate that the asymmetrical helmet represents a structure that combines the formation of a symmetrical helmet and a lance-shaped design on the same bristle. Further, we report structurally similar asymmetrical helmet bristles, lance-shaped bristles and scales that are unambiguously assigned to Mallomonas asmundiae in Middle Eocene sediments from a maar lake in northern Canada, supporting the hypothesis that scale and bristle morphology in the Synurophyceae has undergone extensive prolonged evolutionary stasis. Given differences in scale morphology and the presence of asymmetrical helmet bristles, we transfer the North American endemic Mallomonas acaroides var. muskokana to the rank of species. Further, we formally describe Mallomonas dispar and M. lancea, fossil species with asymmetrical helmet bristles and lance-shaped bristles, respectively. The taxonomic and biogeographic significance of asymmetrical and lance-bearing bristles is discussed.  相似文献   

15.
Bristle positions in two rows of bristles on the basitarsus of the second leg of the fruitfly Drosophila melanogaster were analyzed in order to determine the accuracy of bristle placement within these rows. Within each row the positions of the two terminal bristles were found to be approximately equally variable, and positional variability was found to increase toward the middle of each row. Rows having fewer bristles manifested more positional variability in their midsection. These results are interpreted in terms of a possible bristle spacing mechanism involving repulsive forces between mobile bristle cells.  相似文献   

16.
Summary The legs of flies from 16 different mutant strains ofDrosophila melanogaster were examined for abnormal cuticular polarities and extra joints. The strains were chosen for study because they manifest abnormal cuticular polarities in some parts of the body (10 strains) or because they have missing or defective tarsal joints (6 strains). All but three of the stocks were found to exhibit misorientations of either the bristles, hairs, or “bract-socket vectors” on the legs. The latter term denotes an imaginary vector pointing from a hairlike structure called a “bract” to the bristle socket with which it is associated. On the legs of wild-type flies nearly all such vectors point distally, as do the bristles and hairs. In the mutant flies, the most common vector misorientation is a 180° reversal. When the bract-socket vectors of adjacent bristle sites in the same bristle row point toward one another, the distance between the sites is frequently abnormally large, whereas when the vectors point in opposite directions, the interval is frequently abnormally small. This correlation is interpreted to mean that bristle cells actively repel one another via cytoplasmic extensions that are longer in the direction of the bract-socket vector than in the opposite direction. Repulsive forces of this kind may be responsible for “fine-tuning” the regularity of bristle spacing in wild-type flies. Extra tarsal joints were found in eight of the 16 strains. A ninth strain completely lacking tarsal joints appears in some cases to have an extra tibia-basitarsus joint in its tibia. Whereas the tarsi of wild-type flies contain four joints, the tarsi ofspiny legs mutant flies contain as many as eight joints. In this extreme extra-joint phenotype, four of the joints correspond to the normal wild-type joints, and there is an extra joint in every tarsal segment except the distal-most (fifth) segment. Nearly all such ectopic extra joints have inverted polarity. In other strains the extra tarsal joints are located mainly at the wild-type joint sites, and joints of this sort have wild-type polarity. The alternation of normal and inverted (extra) joints inspiny legs resembles the alternation of normal and inverted (extra) body segment boundaries in the embryonic-lethal mutantpatch, suggesting that tarsal and body segmentation may share a common patterning mechanism.  相似文献   

17.
Traditional screens aiming at identifying genes regulating development have relied on mutagenesis. Here, we describe a new gene involved in bristle development, identified through the use of natural variation and selection. Drosophila melanogaster bears a pattern of 11 macrochaetes per heminotum. From a population initially sampled in Marrakech, a strain was selected for an increased number of thoracic macrochaetes. Using recombination and single nucleotide polymorphisms, the factor responsible was mapped to a single locus on the third chromosome, poils au dos, that encodes a zinc-finger-ZAD protein. The original, as well as new, presumed null, alleles of poils au dos, is associated with ectopic achaete-scute expression that results in the additional bristles. This suggests a possible role for Poils au dos as a repressor of achaete and scute. Ectopic expression appears to be independent of the activity of known cis-regulatory enhancer sequences at the achaete-scute complex that mediate activation at specific sites on the notum. The target sequences for Poils au dos activity were mapped to a 14 kb region around scute. In addition, we show that pad interacts synergistically with the repressor hairy and with Dpp signaling in posterior and anterior regions of the notum, respectively.  相似文献   

18.
Secondary sexual structures in millipedes have evolved to improve the efficiency with which spermatophores are transferred from males to females. Here, we demonstrate the microstructural characteristics of the sexual dimorphism in the leg adhesive pads of the millipede Orthomorphella pekuensis, using field emission scanning electron microscopy. The adult male of this millipede has developed typical adhesive pads on the legs as a secondary sexual character: these help the male hold on to the female during mating. The adhesive pads are located on the ventral surface of the tarsus in the form of numerous filamentous bristles with horizontal striation. There are approximately 300 bristles, each with an average length of approximately 60 µm, on each tarsus. Each bristle has a round socket on the surface of the tarsus and an acuminate tip. The striation appears only on the distal half of each bristle, typically.  相似文献   

19.
Summary The bristle pattern along the anterior margin ofNotch (N1-22.3) wings ofDrosophila hydei and the occurrence ofyellow (y 1–38.8) marked clones induced by X-ray irradiation during various larval stages are described. UnirradiatedN/N + wings show gaps (notches) in the longitudinal bristle rows along the 1st longitudinal vein, with tufts of bristles particularly near gaps. X-ray irradiation increases the number and total length of the gaps. The patterning of bristles along the margin depends on theN (+) genotype of the induced clones. RecombinantN +/N + clones from irradiated wings show excessive growth with an autonomous wildtype bristle pattern. Characteristically, these clones do not respect the dorso-ventral compartment boundary along the wing margin, do not follow an exponential (2n) growth pattern, tend to fill the gaps with bristles and theiryellow medial row bristles are less often interspersed withy + bristles than described forN +/N + wings. HomozygousN appears to be a cell lethal condition inD. hydei as it is inD. melanogaster. When y clones were kept phenotypicallyNotch (viz.,N/N/N +) as the background cells, we found a lower number ofy bristles, a lower percentage of mosaic wings but also a reltive deficiency ofy + interspersions. The latter is discussed in relation to a possible clonal originof the notches.  相似文献   

20.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. The positions of bristles correlate with differences in the spatial expression of the scute (sc) gene in those species examined so far. However, a major upstream activator of scute, Pannier (Pnr), is expressed in a conserved domain over the entire medial notum. Here we examine the expression patterns in Calliphora vicina of stripe (sr), u-shaped (ush), caupolican (caup) and wingless (wg), genes known to modify the activity of Pnr or to act downstream of Pnr in Drosophila. We find that, with minor differences, their expression patterns are conserved. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera and that many differences are likely to be due to changes in cis-regulatory sequences of scute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号