首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) is important for the homeostasis of organ functions. We studied the structural and functional changes in the cardiovascular (CV) and renal systems following early NO deprivation by various nonspecific and specific NO synthase (NOS) inhibitors: N-nitro-L-arginine methyl ester (L-NAME), N-nitro-L-arginine (L-NA), S-methyl-isothiourea (SMT), and L-N6-(1-iminoethyl)-lysine (L-Nil). The aim is to elucidate the involvement of NO through endothelial or inducible NOS (eNOS and iNOS). Drugs were given to spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar Kyoto rats (WKY) from a young age (5-wk-old). Physiological, biochemical, and pathological examinations were performed. L-NAME and L-NA treatment caused a rapid increase in tail cuff pressure (TCP). The TCP of SHR reached a malignant level within 30 days with signs of stroke, proteinuria [corrected] severe glomerular sclerosis, and moderate ventricular hypertrophy (VH). The plasma nitrite/nitrate was reduced, while creatinine, urea nitrogen and uric acid were elevated. The renal tissue cyclic guanosine monophosphate (cGMP) was decreased with an elevated collagen content. The numbers of sclerotic glomeruli, arteriolar and glomerular injury scores were markedly increased, accompanied by reduction in renal blood flow, filtration rate, and fraction. Plasma endothelin-1 was increased following L,-NAME or L-NA treatment for 10 days. The expression of eNOS and iNOS mRNA was depressed by L-NAME and L-NA. The relevant iNOS inhibitors, SMT and L-Nil depressed the iNOS expression, but did not produce significant changes in CV and renal systems. The continuous release of NO via the eNOS system provides a compensatory mechanism to prevent the genetically hypertensive rats from rapid progression to malignant phase. Removal of this compensation results in VH, stroke, glomerular damage, renal function impairment, and sudden death.  相似文献   

2.
We investigated the involvement of matrix metalloproteinases (MMPs), tissue inhibitor (TIMP) and endothelin-1 (ET-1) in the renal damage in spontaneously hypertensive rats (SHR) following nitric oxide (NO) deprivation. SHR received Nomega-nitro-L-arginine methyl ester (L-NAME) from 5 wk-old for a period of 30 days. An ETA antagonist, FR139317 was used. We gave SHR FR139317 alone and cotreatment with L-NAME. L-NAME caused systemic hypertension, decrease in plasma nitrate/nitrite, increases in blood urea nitrogen and creatinine, impairment of glomerular dynamics. NO deprivation reduced the renal tissue cGMP, but it increased the collagen volume fraction, number of sclerotic glomeruli, arteriolar injury score and glomerular injury score. In addition, L-NAME elevated the plasma ET-1 at day 5. Cotreatment with FR139317 alleviated the L-NAME-induced functional and structural changes of renal glomeruli. L-NAME administration for 5 to 10 days resulted in decreases in MMP2 and MMP9 with increasing TIMP2. After L-NAME for 15 days, opposite changes (increases in MMP2 and MMP9 with a decrease in TIMP2) were observed. FR139317 cotreatment ameliorated the L-NAME-induced changes in MMP2 and MMP9 throughout the 30-day observation period. The ETA antagonist cotreatment attenuated the L-NAME-induced increase in TIMP2 before day 15, but not after day 20. The results indicate that ET-1, MMPs and TIMP are involved at the early stage (before 10 days) of glomerular sclerosis and arteriosclerosis with functional impairment following NO deprivation. The changes in MMPs and TIMP at the late stage (after 20 days) may be a compensatory response to prevent further renal damage.  相似文献   

3.
Davidov T  Weiss HR  Tse J  Scholz PM 《Life sciences》2006,79(17):1674-1680
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition.  相似文献   

4.
In glomerular immune injury, the inducible isoform of nitric oxide synthase (iNOS) becomes a major catalyst of NO production. Although iNOS-catalyzed NO production is sustained and can be cytotoxic, iNOS inhibition exacerbates the magnitude of proteinuria that accompanies immune injury. To investigate putative mechanisms of this effect, we assessed changes in glomerular permeability to albumin by using the following two approaches: (i) an in vivo rat model of glomerular immune injury induced by antibody against the glomerular basement membrane (GBM), in which urine albumin excretion was measured under conditions of iNOS inhibition, and (ii) an ex vivo model of isolated rat glomeruli, in which changes in glomerular capillary permeability to albumin were assessed under conditions of NOS inhibition. In rats with anti-GBM antibody-induced glomerular injury, there was an increase in urine albumin excretion. Treatment with two structurally dissimilar iNOS inhibitors at doses sufficient to decrease urine nitrate and/or nitrite exacerbated proteinuria. In these animals, urine excretion of the isoprostane 8-iso-PGF2alpha (marker of oxidative stress) was increased. In isolated glomeruli incubated with the NOS inhibitor L-NMMA, the permeability to albumin increased. This effect was reversed by the NO donor DETA NONOate and by the superoxide dismutase mimetic Tempol. We conclude that NOS-catalyzed NO production is an important mechanism in regulating glomerular permeability to protein. This mechanism involves control of the bioavailability of superoxide.  相似文献   

5.
Nitric oxide has been shown to be beneficial for gastric ulcer healing. We determined the relative effects of endothelial and inducible nitric oxide synthases on gastric ulcer healing in rats. Ulcers were induced by serosal application of acetic acid. Ulcer severity, angiogenesis, and nitric oxide synthase expression were assessed 3-10 days later. The effects of inhibitors of nitric oxide synthase were also examined. Inducible nitric oxide synthase mRNA was only detected in ulcerated tissue (maximal at day 3), whereas the endothelial isoform mRNA was detected in normal tissue and increased during ulcer healing. Inducible nitric oxide synthase was expressed in inflammatory cells in the ulcer bed, whereas endothelial nitric oxide synthase was found in the vascular endothelium and in some mucosal cells in both normal and ulcerated tissues. Angiogenesis changed in parallel with endothelial nitric oxide synthase expression. N(6)-(iminoethyl)-L-lysine did not affect angiogenesis or ulcer healing, while N(G)-nitro-L-arginine methyl ester significantly reduced both. In conclusion, endothelial nitric oxide synthase, but not the inducible isoform, plays a significant role in gastric ulcer healing.  相似文献   

6.
We investigated the role that endothelial nitric oxide synthase plays in post-exercise hypotension in spontaneously hypertensive rats. To accomplish this, rats were subjected to a single bout of dynamic exercise on a treadmill at 15 m/min for 20 min. l-Nitroarginine methyl ester (l-NAME, 40 mg/kg, i.p.) significantly inhibited post-exercise hypotension (25 ± 11 and 5 ± 3 mm Hg, respectively; P < 0.05). In addition, the superoxide anion generation was decreased, while the plasma nitrite production and serine phosphorylation of endothelial nitric oxide synthase were significantly elevated in spontaneously hypertensive rats at 30 min after the termination of exercise. Taken together, these data demonstrate that the increased phosphorylation of endothelial nitric oxide synthase plays a crucial role in the reduction of arterial pressure following a single bout of dynamic exercise in spontaneously hypertensive rats.  相似文献   

7.
目的:探讨L-精氨酸脂质体(L-Arg)对慢性低氧高二氧化碳大鼠一氧化氮代谢及内皮型一氧化氮合酶基因(ecNOSmRNA)表达的影响.方法:将40只健康雄性SD大鼠随机分为4组,正常对照组(NC组),低氧高二氧化碳4周组(HH组),低氧高二氧化碳加L-Arg4周组(HL组)和低氧高二氧化碳加L-Arg脂质体4周组(HP组).采用硝酸还原酶法测定血浆一氧化氮代谢产物(NOx-)含量,组织原位杂交、光镜和图像分析等方法观察肺细小动脉显微结构以及肺细小动脉ecNOSmRNA的表达变化.结果:①HH组mPAP和RV/(LV S)高于NC组,HP组均明显低于HL组与HH组;②HH组的血浆NO含量显著低于NC组(P<0.01),HL组与HP组均明显高于HH组(P<0.01);③HH组的肺细小动脉ecNOSmRNA的平均吸光度值低于NC组(P<0.05);而HP组明显高于HH组和HL组(P<0.01);④HP组的肺细小动脉管壁面积/管总面积比值(WA/TA)和中膜厚度(PAMT)均明显低于HH组(P<0.01),且低于HL组(P<0.05).结论:L-Arg脂质体较L-Arg有更明显的降低慢性低氧高二氧化碳大鼠肺动脉压和减轻肺血管重建的治疗作用,其机制可能与L-Arg脂质体促进L-Arg的跨膜转运有关.  相似文献   

8.
Lu R  Hu CP  Wu XP  Liao EY  Li YJ 《Comparative medicine》2002,52(3):224-228
Results of previous studies have indicated that bone mineral density (BMD) is decreased in aged animals and elderly humans, and that treatment with nitric oxide (NO) donors prevents bone loss. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, can inhibit NO synthesis. In the study reported here, we examined age-related changes in the serum content of ADMA and in BMD in various skeletal regions. The BMD in the lumbar part of the spine, the femur, and the tibia in 12-month-old rats was markedly increased, compared with that in 6-month-old rats, and the BMD in 20-month-old rats was decreased, compared with that in 12-month-old rats. Serum concentration of ADMA in 20-month-old rats was significantly increased, compared with that in 6- or 12-month-old rats. A similar age-related change in the concentration of lipid peroxide also was seen in the three age groups. These results suggest that the increased amount of endogenous ADMA may be associated with an age-related decrease in BMD in rats.  相似文献   

9.
Increased nitric oxide synthase expression in aorta of cirrhotic rats.   总被引:2,自引:0,他引:2  
H Liu  D Song  S S Lee 《Life sciences》1999,64(19):1753-1759
  相似文献   

10.
Yu WJ  Juang SW  Chin WT  Chi TC  Chang CJ  Cheng JT 《Life sciences》2000,68(6):625-634
Nitric oxide (NO) is known to play an important role in the pathophysiology of insulin-dependent diabetic mellitus (IDDM). In an attempt to investigate the relation between insulin and NO in IDDM, the present study employed male Wistar rats to induce IDDM by intravenous injection of streptozotocin (STZ). Four groups of rats were used; untreated normal control group, insulin treated STZ group, vehicle-treated STZ control, and one group of age-matched rats which were orally supplied with glucose to increase plasma glucose (glucose-challenged rats). Changes of the activity and gene expression of neuronal nitric oxide synthase (nNOS) were examined in cerebellum and kidney of these groups. The activity of nNOS in cerebellum, determined by conversion of [3H] L-arginine to [3H] L-citrulline, in STZ-induced diabetic rats was markedly lower than normal rats. Insulin treatment reversed the nNOS activity. Similar reversion by insulin treatment was also obtained in the gene expression of nNOS. However, the activity and gene expression of nNOS in glucose-challenged rats were not different from those in normal rats. The role of hyperglycemia can thus be ruled out. These findings indicated that an impairment of nNOS in the brain of rats with IDDM is mainly due to the absence of insulin.  相似文献   

11.
昆虫一氧化氮及其合酶的研究进展   总被引:5,自引:0,他引:5  
王晓安  郑哲民 《昆虫知识》2003,40(2):112-118
一氧化氮作为一种重要的信息分子 ,参与调节昆虫嗅觉、视觉、机械感受、发育、机体防御及学习行为。该文从生理、生化、形态定位以及信号转导几方面综述了有关昆虫一氧化氮及其合酶的最新研究进展。  相似文献   

12.
Nitric oxide and nitric oxide synthase activity in plants   总被引:26,自引:0,他引:26  
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.  相似文献   

13.
H(4)B is an essential catalytic cofactor of the mNOSs. It acts as an electron donor and activates the ferrous heme-oxygen complex intermediate during Arg oxidation (first step) and NOHA oxidation (second step) leading to nitric oxide and citrulline as final products. However, its role as a proton donor is still debated. Furthermore, its exact involvement has never been explored for other NOSs such as NOS-like proteins from bacteria. This article proposes a comparative study of the role of H(4)B between iNOS and bsNOS. In this work, we have used freeze-quench to stop the arginine and NOHA oxidation reactions and trap reaction intermediates. We have characterized these intermediates using multifrequency electron paramagnetic resonance. For the first time, to our knowledge, we report a radical formation for a nonmammalian NOS. The results indicate that bsNOS, like iNOS, has the capacity to generate a pterin radical during Arg oxidation. Our current electron paramagnetic resonance data suggest that this radical is protonated indicating that H(4)B may not transfer any proton. In the 2nd step, the radical trapped for iNOS is also suggested to be protonated as in the 1st step, whereas it was not possible to trap a radical for the bsNOS 2nd step. Our data highlight potential differences for the catalytic mechanism of NOHA oxidation between mammalian and bacterial NOSs.  相似文献   

14.
Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1 (IL-1) and tumor necrosis factor--(TNF-). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1 and TNF- were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1 were still significantly enhanced, but TNF- was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1 were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1 are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms.  相似文献   

15.
Anapyrexia (a regulated decrease in body temperature) is a response to hypoxia that occurs in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Recently, it has been shown that the NO pathway plays a major role in hypoxia-induced anapyrexia. However, very little is known about which of the three different nitric oxide synthase isoforms (neuronal, endothelial, or inducible) is involved. The present study was designed to test the hypothesis that neuronal nitric oxide synthase (nNOS) plays a role in hypoxia-induced anapyrexia. Body core temperature (T(c)) of awake, unrestrained rats was measured continuously using biotelemetry. Rats were submitted to hypoxia, 7-nitroindazole (7-NI; a selective nNOS inhibitor) injection, or both treatments together. Control animals received vehicle injections of the same volume. We observed a significant (P < 0.05) reduction in T(c) of approximately 2.8 degrees C after hypoxia (7% inspired O(2)), whereas intraperitoneal injection of 7-NI at 25 mg/kg caused no significant change in T(c). 7-NI at 30 mg/kg elicited a reduction in T(c) and was abandoned in further experiments. When the two treatments were combined (25 mg/kg of 7-NI and 7% inspired O(2)), we observed a significant attenuation of hypoxia-induced anapyrexia. The data indicate that nNOS plays a role in hypoxia-induced anapyrexia.  相似文献   

16.
17.
Endothelial nitric oxide synthase (eNOS), originally found in the endothelium of vascular tissue, also exists in other cell types, including ciliated epithelia of airways. The eNOS is ultrastructurally localized to the basal body of the microtubules of the cilia, and nitric oxide (NO) stimulates ciliary beat frequency (CBF). We examined whether the expression of eNOS is present in ciliated cells of other organs. Western blotting analysis revealed that eNOS was expressed in the rat cerebrum, lung, trachea, testis, and oviduct. Immunohistochemical staining showed that eNOS was localized in the ciliated epithelia of airways, oviduct, testis, and ependymal cells of brain in addition to the endothelium and smooth muscle of the vasculature. To confirm the activation of eNOS in the ciliated epithelia, we examined the effect of L-arginine (L-Arg), the substrate of NOS, on the production of nitrite and nitrate (NOx) in the cultured explants of rat trachea. L-Arg (100 microM) increased NOx levels significantly (p<0.05). In explants exposed to inhibitors of NOS, the effect of l-Arg on the production of NOx was blocked. These findings suggest that epithelial NO plays an important role in signal transduction associated with ciliary functions.  相似文献   

18.
We hypothesized that nitric oxide generated by inducible nitric oxide synthase (iNOS) may contribute to the homeostatic role of this agent in hyperthyroidism and may, therefore, participate in long-term control of blood pressure (BP). The effects of chronic iNOS inhibition by oral aminoguanidine (AG) administration on BP and morphological and renal variables in hyperthyroid rats were analyzed. The following four groups (n = 8 each) of male Wistar rats were used: control group and groups treated with AG (50 mg.kg(-1).day(-1), via drinking water), thyroxine (T4, 50 microg.rat(-1).day(-1)), or AG + T4. All treatments were maintained for 3 wk. Tail systolic BP and heart rate (HR) were recorded weekly. Finally, we measured BP (mmHg) and HR in conscious rats and morphological, plasma, and renal variables. T(4) administration produced a small BP (125 +/- 2, P < 0.05) increase vs. control (115 +/- 2) rats. AG administration to normal rats did not modify BP (109 +/- 3) or any other hemodynamic variable. However, coadministration of T4 and AG produced a marked increase in BP (140 +/- 3, P < 0.01 vs. T4). Pulse pressure and HR were increased in both T4- and T4 + AG -treated groups without differences between them. Plasma NOx (micromol/l) were increased in the T4 group (10.02 +/- 0.15, P < 0.05 vs. controls 6.1 +/- 0.10), and AG reduced this variable in T4-treated rats (6.81 +/- 0.14, P < 0.05 vs. T4) but not in normal rats (5.78 +/- 0.20). Renal and ventricular hypertrophy and proteinuria of hyperthyroid rats were unaffected by AG treatment. In conclusion, the results of the present paper indicate that iNOS activity may counterbalance the prohypertensive effects of T4.  相似文献   

19.
It is well known that glucose-stimulated insulin secretion (GSIS) decreases after exercise training. In the present study, we investigated the effects of exercise training (9 weeks of running) on the activity of glucokinase (GK), the production of nitric oxide (NO), and the protein expressions of both glucose transporter-2 (GLUT-2) and NO synthase (NOS) in rat pancreatic islets. Exercise training significantly reduced GSIS, with decreases in GK activity and GLUT-2 protein expression. The NO releases and cGMP contents were higher in the islets of trained rats than in those of control rats. Exercise training enhanced cNOS activity, the protein expression of both neuronal nitric oxide synthase (nNOS) and calmodulin, and NADPH-cytochrome c reductase activity in the homogenates of islets. Thus, exercise training-induced reduction of GSIS would result from, at least in part, decreases in both glucose entry and the first step in glycolytic utilization of glucose. Moreover, exercise training could enhance the protein expression of nNOS, which in turn enhances two catalytic activities of nNOS, an NO production and a cytochrome c reductase activity.  相似文献   

20.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号