首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and stimulates lattice assembly. Murine phosphatidylinositol 4-phosphate 5-kinase alpha (PI5KIalpha) has been shown to enhance endocytosis in a PIP2-dependent manner. We tested the hypothesis that PI5KIalpha-mediated PIP2 production would negatively regulate ENaC current by enhancing epsin-mediated endocytosis of the channel. Expression of PI5KIalpha decreased ENaC currents in Xenopus oocytes by 80%, entirely because of a decrease in cell surface ENaC levels. Catalytically inactive mutants of PI5Kalpha had no effect on ENaC activity. Expression of the PIP2 binding region of epsin increased ENaC current in oocytes, an effect completely reversed by co-expression of PI5KIalpha. Overexpression of epsin reduced amiloride-sensitive current in CCD cells. Overexpression of PI5KIalpha enhanced membrane PIP2 levels and reduced apical surface expression of ENaC in CCD cells, down-regulating amiloride-sensitive current. Knockdown of PI5KIalpha with isoform-specific siRNA resulted in a 4-fold enhancement of ENaC activity. PI5KIalpha localized exclusively to the apical plasma membrane domain when overexpressed in mouse CCD cells, consistent for a role in regulating PIP2 production at the apical plasma membrane. We conclude that membrane turnover events regulating ENaC surface expression and activity in oocytes and CCD cells can be regulated by PI5KIalpha.  相似文献   

2.
Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.  相似文献   

3.
Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base. The multiple DPW motifs, typical of the central region of epsin 1, are only partially conserved in epsin 2. Both proteins, however, interact through this central region with the clathrin adaptor AP-2. In addition, we show here that both epsin 1 and 2 interact with clathrin. The three NPF motifs of the COOH-terminal region of epsin 1 are conserved in the corresponding region of epsin 2, consistent with the binding of both proteins to Eps15. Epsin 2, like epsin 1, is enriched in brain, is present in a brain-derived clathrin-coated vesicle fraction, is concentrated in the peri-Golgi region and at the cell periphery of transfected cells, and partially colocalizes with clathrin. High overexpression of green fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.  相似文献   

4.
ClC-5 chloride channels and epithelial sodium channels (ENaC) are present in many cell types including airway and retinal epithelia. Since ENaC activity is known to be affected by chloride transport, we co-injected Xenopus oocytes with cRNAs encoding ENaC and ClC-5 to investigate whether channel currents are impacted by heterologous co-expression of these proteins. ClC-5 currents were not detectably affected by co-expression with ENaC, whereas amiloride-sensitive ENaC currents were significantly lower compared to control oocytes expressing ENaC alone. Co-expression of ENaC with cRNA sequences encoding non-conducting fragments of ClC-5 revealed that the amino acid sequence region between positions 347 and 647 was sufficient for inhibition of ENaC currents. Co-expression of ENaC and another transport protein, the sodium dicarboxylate co-transporter (NaDC-1), did not affect ENaC currents. To test whether the inhibitory effects of ClC-5 were specific for ENaC, ClC-5 was also co-expressed with CFTR. CFTR currents were also inhibited by co-expression with ClC-5, whereas ClC-5 currents were unaffected. Western blot analysis of biotinylated oocyte surface membranes revealed that the co-expression of ClC-5 with ENaC, CFTR, or NaDC-1 decreased the abundance of these proteins at the surface membrane. We conclude that overexpression of ClC-5, specifically amino acids 347–647, can alter the normal translation or trafficking of ENaC and other ion transport proteins by a mechanism that is independent of the chloride conductance of ClC-5.  相似文献   

5.
Dynamics of clathrin and adaptor proteins during endocytosis   总被引:3,自引:0,他引:3  
The endocytic adaptor complex AP-2 colocalizes with the majority of clathrin-positive spots at the cell surface. However, we previously observed that AP-2 is excluded from internalizing clathrin-coated vesicles (CCVs). The present studies quantitatively demonstrate that AP-2 disengages from sites of endocytosis seconds before internalization of the nascent CCV. In contrast, epsin, an alternate adaptor for clathrin at the plasma membrane, disappeared, along with clathrin. This suggests that epsin remains an integral part of the CCV throughout endocytosis. Clathrin spots at the cell surface represent a heterogeneous population: a majority (70%) of the spots disappeared with a time course of 4 min, whereas a minority (22%) remained static for 30 min. The static clathrin spots undergo constant subunit exchange, suggesting that although they are static structures, these spots comprise functional clathrin molecules, rather than dead-end aggregates. These results support a model where AP-2 serves a cargo-sorting function before endocytosis, whereas alternate adaptors, such as epsin, actually link cargo to the clathrin coat surrounding nascent endocytic vesicles. These data also support a role for static clathrin, providing a nucleation site for endocytosis. adaptor complex; epsin; total internal reflection fluorescence microscopy  相似文献   

6.
Epsin N-terminal homology (ENTH) domains occur in proteins of either the epsin or epsin-related (epsinR) form. They principally function in clathrin-mediated trafficking and membrane deformation. Both epsin and epsinR possess clathrin-binding motifs, but only epsin incorporates a ubiquitin-interaction motif (UIM). To better understand the origins of ENTH-domain proteins and their functions, we performed detailed comparative genomics and phylogenetics on the epsin family. The epsin ENTH-UIM configuration is an architecture restricted to yeast and animals. Further, we undertook functional analysis in Trypanosoma brucei (T. brucei) , a divergent organism possessing a single ENTH-domain protein (TbEpsinR). TbEpsinR has a cellular location similar to both epsin and epsinR at plasma membrane clathrin budding sites and endosomal compartments, and associates with clathrin, as demonstrated by coimmunoprecipitation. Knockdown of TbEpsinR leads to a significant decrease in the intracellular pools of multiple surface antigens, without affecting bulk membrane internalization. Therefore, despite lacking the UIM, TbEpsinR maintains a similar role to metazoan epsin in endocytosis and participates as a clathrin-associated adaptor. We suggest that recruitment of a UIM to the ENTH-domain proteins was not essential for participation in endocytosis of ubiquitylated molecules, and is presumably a specific innovation restricted to higher eukaryotes.  相似文献   

7.
Integral membrane proteins are synthesized on the cytoplasmic face of the endoplasmic reticulum (ER). After being translocated or inserted into the ER, they fold and undergo post-translational modifications. Within the ER, proteins are also subjected to quality control checkpoints, during which misfolded proteins may be degraded by proteasomes via a process known as ER-associated degradation. Molecular chaperones, including the small heat shock protein alphaA-crystallin, have recently been shown to play a role in this process. We have now found that alphaA-crystallin is expressed in cultured mouse collecting duct cells, where apical Na(+) transport is mediated by epithelial Na(+) channels (ENaC). ENaC-mediated Na(+) currents in Xenopus oocytes were reduced by co-expression of alphaA-crystallin. This reduction in ENaC activity reflected a decrease in the number of channels expressed at the cell surface. Furthermore, we observed that the rate of ENaC delivery to the cell surface of Xenopus oocytes was significantly reduced by co-expression of alphaA-crystallin, whereas the rate of channel retrieval remained unchanged. We also observed that alphaA-crystallin and ENaC co-immunoprecipitate. These data are consistent with the hypothesis that small heat shock proteins recognize ENaC subunits at ER quality control checkpoints and can target ENaC subunits for ER-associated degradation.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its Cl(-) channel properties, has regulatory interactions with other epithelial ion channels including the epithelial Na(+) channel (ENaC). Both the open probability and surface expression of wild type CFTR Cl(-) channels are increased significantly when CFTR is co-expressed in Xenopus oocytes with alphabetagamma-ENaC, and conversely, the activity of ENaC is inhibited following wild type CFTR activation. Using the Xenopus oocyte expression system, a lack of functional regulatory interactions between DeltaF508-CFTR and ENaC was observed following activation of DeltaF508-CFTR by forskolin and isobutylmethylxanthine (IBMX). Whole cell currents in oocytes expressing ENaC alone decreased in response to genistein but increased in response to a combination of forskolin and IBMX followed by genistein. In contrast, ENaC currents in oocytes co-expressing ENaC and DeltaF508-CFTR remained stable following stimulation with forskolin/IBMX/genistein. Furthermore, co-expression of DeltaF508-CFTR with ENaC enhanced the forskolin/IBMX/genistein-mediated activation of DeltaF508-CFTR. Our data suggest that genistein restores regulatory interactions between DeltaF508-CFTR and ENaC and that combinations of protein repair agents, such as 4-phenylbutyrate and genistein, may be necessary to restore DeltaF508-CFTR function in vivo.  相似文献   

9.
Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein   总被引:8,自引:2,他引:6  
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.  相似文献   

10.
Lee GJ  Kim H  Kang H  Jang M  Lee DW  Lee S  Hwang I 《Plant physiology》2007,143(4):1561-1575
Members of the epsin family of proteins (epsins) are characterized by the presence of an epsin N-terminal homology (ENTH) domain. Epsins have been implicated in various protein-trafficking pathways in animal and yeast (Saccharomyces cerevisiae) cells. Plant cells also contain multiple epsin-related proteins. In Arabidopsis (Arabidopsis thaliana), EPSIN1 is involved in vacuolar trafficking of soluble proteins. In this study, we investigated the role of Arabidopsis EpsinR2 in protein trafficking in plant cells. EpsinR2 contains a highly conserved ENTH domain but a fairly divergent C-terminal sequence. We found that the N-terminal ENTH domain specifically binds to phosphatidylinositol-3-P in vitro and has a critical role in the targeting of EpsinR2. Upon transient expression in protoplasts, hemagglutinin epitope-tagged EpsinR2 was translocated primarily to a novel cellular compartment, while a minor portion localized to the Golgi complex. Protein-binding experiments showed that EpsinR2 interacts with clathrin, AtVTI12, and the Arabidopsis homologs of adaptor protein-3 delta-adaptin and adaptor protein-2 alpha-adaptin. Localization experiments revealed that hemagglutinin epitope-tagged EpsinR2 colocalizes primarily with delta-adaptin and partially colocalizes with clathrin and AtVTI12. Based on these findings, we propose that EpsinR2 plays an important role in protein trafficking through interactions with delta-adaptin, AtVTI12, clathrin, and phosphatidylinositol-3-P.  相似文献   

11.
Epsin is a recently identified protein that appears to play an important role in clathrin-mediated endocytosis. The central region of epsin 1, the so-called DPW domain, binds to the heterotetrameric AP-2 adaptor complex by associating directly with the globular appendage of the alpha subunit. We have found that this central portion of epsin 1 also associates with clathrin. The interaction with clathrin is direct and not mediated by epsin-bound AP-2. Alanine scanning mutagenesis shows that clathrin binding depends on the sequence (257)LMDLADV located within the epsin 1 DPW domain. This sequence, related to the known clathrin-binding sequences in the adaptor beta subunits, amphiphysin, and beta-arrestin, facilitates the association of epsin 1 with the terminal domain of the clathrin heavy chain. Unexpectedly, inhibiting the binding of AP-2 to the GST-epsin DPW fusion protein by progressively deleting DPW triplets but leaving the LMDLADV sequence intact, diminishes the association of clathrin in parallel with AP-2. Because the beta subunit of the AP-2 complex also contains a clathrin-binding site, optimal association with soluble clathrin appears to depend on the presence of at least two distinct clathrin-binding sites, and we show that a second clathrin-binding sequence (480)LVDLD, located within the carboxyl-terminal segment of epsin 1, also interacts with clathrin directly. The LMDLADV and LVDLD sequences act cooperatively in clathrin recruitment assays, suggesting that they bind to different sites on the clathrin-terminal domain. The evolutionary conservation of similar clathrin-binding sequences in several metazoan epsin-like molecules suggests that the ability to establish multiple protein-protein contacts within a developing clathrin-coated bud is an important aspect of epsin function.  相似文献   

12.
The PY and YXXphi motifs are canonical sorting signals involved in trafficking. Nedd4-2 and the mu(2)-subunit of the AP-2 complex target these motifs to facilitate internalization. Epithelial Na(+) channel (ENaC) subunits contain both motifs in their cytosolic COOH termini where they overlap ((S/T)PPPXYX(S/T)phi). Just preceding the PY and embedded within the YXXphi motifs are conserved serine/threonine. We test here whether these conserved Ser/Thr modulate ENaC activity by influencing the function of the internalization domains. We find that co-expression of dominant-negative dynamin (K44A) with ENaC increases channel activity. Conversely, co-expression of Nedd4-2 and epsin with ENaC decrease activity. Alanine substitution of the conserved Thr(628) preceding the PY motif in gamma-mENaC had no effect on basal activity. Channels with this mutation, however, responded to K44A and epsin but not Nedd4-2. Similarly, mutation of the proline repeat in the PY motif of gamma-mENaC disrupted only Nedd4-2 regulation having no effect on regulation by K44A and epsin. Alanine substitution of the conserved Thr within the YXX motif of gamma-mENaC (T635A) increased basal activity. Channels containing this mutation responded to Nedd4-2 but not K44A and epsin. Channels containing the T635(D/E) substitution in gamma-mENaC did not have increased basal activity and responded to Nedd4-2 but not K44A. The double mutant T628A,T635A did not respond to Nedd4-2 or K44A. Mutation of Thr(628) and Thr(635) also disrupted ENaC precipitation with the mu(2)-subunit of the AP-2 complex. Moreover, the YXXphi motif, independent of the PY motif, was sufficient to target degradation with T635A disrupting this effect. These results demonstrate that the overlapping PY and YXXphi motifs in ENaC are, in some instances, capable of independent function and that the Ser/Thr just preceding and within these domains impact this function.  相似文献   

13.
The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant ((K220R)GRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 ((D110A)GRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.  相似文献   

14.
The spatial and temporal regulation of the interactions among the approximately 60 proteins required for endocytosis is under active investigation in many laboratories. We have identified the interaction between monomeric clathrin adaptors and endocytic scaffold proteins as a critical prerequisite for the recruitment and/or spatiotemporal dynamics of endocytic proteins at early and late stages of internalization. Quadruple deletion yeast cells (DeltaDeltaDeltaDelta) lacking four putative adaptors, Ent1/2 and Yap1801/2 (homologues of epsin and AP180/CALM proteins), with a plasmid encoding Ent1 or Yap1802 mutants, have defects in endocytosis and growth at 37 degrees C. Live-cell imaging revealed that the dynamics of the early- and late-acting scaffold proteins Ede1 and Pan1, respectively, depend upon adaptor interactions mediated by adaptor asparagine-proline-phenylalanine motifs binding to scaffold Eps15 homology domains. These results suggest that adaptor/scaffold interactions regulate transitions from early to late events and that clathrin adaptor/scaffold protein interaction is essential for clathrin-mediated endocytosis.  相似文献   

15.
Clathrin-coated vesicles (CCVs) are a central component of endocytosis and traffic between the trans-Golgi network (TGN) and endosomes. Although endocytic CCV formation is well characterized, much less is known about CCV formation at internal membranes. Here we describe two epsin amino-terminal homology (ENTH) domain-containing proteins, Ent3p and Ent5p, that are intimately involved in clathrin function at the Golgi. Both proteins associate with the clathrin adaptor Gga2p in vivo; Ent5p also interacts with the clathrin adaptor complex AP-1 and clathrin. A novel, conserved motif that mediates the interaction of Ent3p and Ent5p with gamma-ear domains of Gga2p and AP-1 is defined. Ent3p and Ent5p colocalize with clathrin, and cells lacking both Ent proteins exhibit defects in clathrin localization and traffic between the Golgi and endosomes. The findings suggest that Ent3p and Ent5p constitute a functionally related pair that co-operate with Gga proteins and AP-1 to recruit clathrin and promote formation of clathrin coats at the Golgi/endosomes. On the basis of our results and the established roles of epsin and epsin-related proteins in endocytosis, we propose that ENTH-domain-containing proteins are a universal component of CCV formation.  相似文献   

16.
Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.  相似文献   

17.
Recent molecular cloning of the epithelial sodium channel (ENaC) provides the opportunity to identify ENaC-associated proteins that function in regulating its cell surface expression and activity. We have examined whether ENaC is associated with Apx (apical protein Xenopus) and the spectrin-based membrane cytoskeleton in Xenopus A6 renal epithelial cells. We have also addressed whether Apx is required for the expression of amiloride-sensitive Na(+) currents by cloned ENaC. Sucrose density gradient centrifugation of A6 cell detergent extracts showed co-sedimentation of xENaC, alpha-spectrin, and Apx. Immunoblot analysis of proteins co-immunoprecipitating under high stringency conditions from peak Xenopus ENaC/Apx-containing gradient fractions indicate that ENaC, Apx, and alpha-spectrin are associated in a macromolecular complex. To examine whether Apx is required for the functional expression of ENaC, alphabetagamma mENaC cRNAs were coinjected into Xenopus oocytes with Apx sense or antisense oligodeoxynucleotides. The two-electrode voltage clamp technique showed there was a marked reduction in amiloride-sensitive current in oocytes coinjected with antisense oligonucleotides when to compared with oocytes coinjected with sense oligonucleotides. These studies indicate that ENaC is associated in a macromolecular complex with Apx and alpha-spectrin in A6 cells and suggest that Apx is required for the functional expression of ENaC in Xenopus epithelia.  相似文献   

18.
19.
The heterotetrameric AP2 adaptor (alpha, beta 2, mu 2 and sigma 2 subunits) plays a central role in clathrin-mediated endocytosis. We present the protein recruitment function and 1.7 A resolution structure of its beta 2-appendage domain to complement those previously determined for the mu 2 subunit and alpha appendage. Using structure-directed mutagenesis, we demonstrate the ability of the beta 2 appendage alone to bind directly to clathrin and the accessory proteins AP180, epsin and eps15 at the same site. Clathrin polymerization is promoted by binding of clathrin simultaneously to the beta 2-appendage site and to a second site on the adjacent beta 2 hinge. This results in the displacement of the other ligands from the beta 2 appendage. Thus clathrin binding to an AP2-accessory protein complex would cause the controlled release of accessory proteins at sites of vesicle formation.  相似文献   

20.
The Epithelial Na(+) Channel (ENaC) is an apical heteromeric channel that mediates Na(+) entry into epithelial cells from the luminal cell surface. ENaC is activated by proteases that interact with the channel during biosynthesis or at the extracellular surface. Meprins are cell surface and secreted metalloproteinases of the kidney and intestine. We discovered by affinity chromatography that meprins bind γ-ENaC, a subunit of the ENaC hetero-oligomer. The physical interaction involves NH(2)-terminal cytoplasmic residues 37-54 of γ-ENaC, containing a critical gating domain immediately before the first transmembrane domain, and the cytoplasmic COOH-terminal tail of meprin β (residues 679-704). This potential association was confirmed by co-expression and co-immunoprecipitation studies. Functional assays revealed that meprins stimulate ENaC expressed exogenously in Xenopus oocytes and endogenously in epithelial cells. Co-expression of ENaC subunits and meprin β or α/β in Xenopus oocytes increased amiloride-sensitive Na(+) currents approximately two-fold. This increase was blocked by preincubation with an inhibitor of meprin activity, actinonin. The meprin-mediated increase in ENaC currents in oocytes and epithelial cell monolayers required meprin β, but not the α subunit. Meprin β promoted cleavage of α and γ-ENaC subunits at sites close to the second transmembrane domain in the extracellular domain of each channel subunit. Thus, meprin β regulates the activity of ENaC in a metalloprotease-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号