首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ultrastructure of the corpus cardiacum (CC) and corpus allatum (CA) of the house cricket, Acheta domesticus, is described. Axon profiles within the CC contain neurosecretory granules 160–350 nm in diameter which are indistinguishable from those found in type I neurosecretory cells of the pars intercerebralis and in the nervus corporis cardiaci I. The CC itself contains two cell types: intrinsic neurosecretory cells and glial cells. Intrinsic NSC cytoplasm contains Golgi bodies and electron dense neurosecretory granules 160–350 nm in diameter. Synaptoid configurations with 20–50 nm diameter electron lucent vesicles were observed within axon profiles of the CC. The structure of the CA is relatively uniform with one cell type predominating. Typical CA cells possess large nucleoli, active Golgi complexes, numerous mitochondria, and occassional microtubules. Groups of dark staining cells scattered throughout the CA of some animals were interpreted as evidence of cellular death.This work was done while JTB was supported by USPHS Training Grant HD-0266 from NICHDI wish to express my thanks to Dr. Richard A. Cloney for sharing his expertise in electron microscopy  相似文献   

2.
Summary The fine structures of the neurons and neuropils of the magnocellular supraoptic nucleus and the parvocellular nuclei of the rostral hypothalamus, including the suprachiasmatic and medial, lateral and periventricular preoptic nuclei, and the neuronal apparatus of the organum vasculosum laminae terminalis, have been examined in the male White-crowned Sparrow, Zonotrichia leucophrys gambelii, by correlated light and electron microscopy.The magnocellular supraoptic nucleus is characterized by large neurosecretory perikarya which contain a well developed Golgi complex and densecored granules 1,500–2,200 Å in diameter. The neuropil displays axons, dendrites and glial fibers. Some axonal profiles contain dense-cored vesicles 800–1,000 Å in diameter and clear vesicles 500 Å in diameter. Axo-somatic and axo-dendritic synapses are conspicuous in this nuclear region.The suprachiasmatic nucleus is characterized by an accumulation of small neurons with moderately developed cellular organelles and some dense-cored granules, approximately 1,000 Å in diameter. The profiles of axons within the neuropil contain dense-cored granules 800–1,000 Å in diameter and clear vesicles 500 Å in diameter.The neurons of the medial preoptic nucleus are relatively large and exhibit well developed cellular organelles and dense-cored granules 1,300 to 1,500 Å in diameter. Granular materials are formed within the Golgi complex. The medial preoptic nucleus is rich in secretory perikarya.Occasionally, neurons with granules 1,500–2,200 Å in diameter are encountered in the lateral preoptic and periventricular preoptic nuclei. They may be considered as scattered elements of the magnocellular (supraoptic and paraventricular) system.The organum vasculosum laminae terminalis consists of three layers, i.e., ependymal, internal and external zones, and exhibits a vascular arrangement similar to that of the median eminence. The perikarya of the parvocellular neurons and their axons in the internal zone contain numerous secretory granules ranging from 1,300 to 1,500 Å in diameter.This investigation was supported by Grant No. 5R040 Japan-U.S. Cooperative Science Program of the Japan Society for the Promotion of Science to Professor H. Kobayashi and Professor S.-I. Mikami, by a Scientific Research Grant No. 56019 from the Ministry of Education of Japan to S.-I. Mikami, by support from the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Biologie der Zeitmessung) to Prof. A. Oksche and by Grant No. GF 33334, U.S.-Japan Cooperative Science Program of the National Science Foundation to Prof. D.S. Farner.Herrn Professor Dr. Dres h.c. Wolfgang Bargmann zu seinem 70. Geburtstag am 27. Januar 1976 gewidmet.  相似文献   

3.
Supraoptic nuclei in the hypothalamus of rats were fixed for the electron microscope by vascular perfusion with solutions of glutaraldehyde followed by post fixation with osmium tetroxide. Cytochemical methods for detection of acid phosphatase and thiamine pyrophosphatase activity have been applied to glutaraldehyde-fixed frozen sections containing the neurosecretory cells. The enzyme activities have been localized to certain Golgi cisternae. Acid phosphatase activity is present in the large (0.4 µ to 1.0 µ) granules or dense bodies which are surrounded by a single limiting membrane; both features characterize these structures as lysosomes. Smaller (0.1 µ) granules also present in the perikarya are generally unreactive towards enzyme activity and resemble in form the neurosecretory granules in the neurohypophysis.  相似文献   

4.
Summary Numerous secretory parvocellular perikarya were found in the preoptic region of the domestic fowl (Gallus gallus). The dense-core secretory vesicles belong to two categories: vesicles with a diameter of (i)80–90 nm and (ii) 110–140nm. Scattered magnocellular elements display larger dense-core granules. The parvocellular neurons form unit-like clusters, showing also zones of direct apposition of neuronal membranes. The surrounding neuropil is rich in synaptic structures, formed by at least three types of axon terminals, distinguishable on the basis of vesicular morphology. These observations confirm the findings in other avian species. The hypothetical function of this system of peptidergic neurons in the rostral hypothalamus of birds is discussed.  相似文献   

5.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

6.
48 hrs. after an intra-cerebroventricular injection of colchicine (100 micrograms), antisera to three putative peptides included in the rat melanin-concentrating hormone (MCH) precursor, strongly stained the secretory granules accumulated in perikarya. In control rats, these antisera stained endoplasmic reticulum, Golgi apparatus, or neurosecretory granules respectively. Colchicine also induced a dramatic decrease in hybridization signal obtained with a probe complementary to the prepro-MCH-mRNA. Similarly, colchicine induced a strong increase in vasopressin immunoreactivity in neurons of the paraventricular and supraoptic nuclei, and a strong decrease of the vasopressin precursor mRNA. These results demonstrated that, in two peptidergic neuron populations of the rat hypothalamus, colchicine lowers mRNAs and impairs neuropeptide protein synthesis, consecutively to the accumulation of neurosecretory granules in perikarya.  相似文献   

7.
Three types of mature epidermal neurons and several of theirdifferentiating stages aie presented in this ultrastructuralstudy. Each of the three types, neurosensory, neurosecretory,and ganglionic cells, is derived from interstitial cells, (i)Mature neurosensory cells contain elongated nuclei, a well-developedcilium in each cell, and membrane-bounded neurosecretory droplets(700–1300 A in diameter). There may be two or more neuritesin which are numerous microtubules, glycogen particles, ribosomesand many neurosecretory droplets, (ii) Mature neurosecretorycells closely resemble neurosensory cells, except that no ciliumis present. The perikarya contain small, dense nuclei, neurosecretorydroplets (850–1300 A in diameter), mitochondria, glycogenparticles, and microtubules. Active Golgi complexes are presentin both cell types. The nemites are similar to those describedfor neurosensory cells, (iii) Mature ganglionic cells are bipolaror multipolar. The small, dense nuclei are surrounded by a smallamount of cytoplasm. The neurites contain mostly microtubules;a few mitochondria, ribosomes, and glycogen particles are alsopresent, but there are no secretory droplets. To date, only neurosensory and neurosecretory cells have beenobserved in the gastiodermis. They are structurally indistinguishablefrom their epideimal counterparts. A significant finding is that three types of synapses—neuromuscular,neuronematocyte, and interneuronal—are identified in boththe epidermal and gastrodermal neurons.  相似文献   

8.
Summary The submicroscopic structure of the nerve cells in the planarian brain was studied. Close similarities with neurons of other invertebrates were noted. In the cytoplasm of the planarian nerve cells there are at least three types of vesicular inclusions: 1) Clear vesicles (200–800 Å in epon embedded tissue) similar in morphological appearance to classical synaptic vesicles. These have generally some content of extremely low density but occasionally a dense core. 2) Dense vesicles (400–1,200 Å in epon embedded tissue) containing highly osmiophilic granules. Between the limiting membrane of the vesicle and the granule there is always a clear rim of variable width. These vesicles closely resemble synaptic vesicles described in vertebrate adrenergic endings. 3) Neurosecretory vesicles (600–1,300 Å in Vestopal embedded tissue) similar to elementary granules observed in neurosecretory systems in vertebrates and invertebrates. All three vesicle types have the same mode of origin from the Golgi membranes. All are present in the nerve cell processes of the neuropil as well as in the perikarya. Any given perikaryon or axon contains only one of the three vesicle types. All of these vesicles are considered to be discharged into the axons from their site of origin within the perikaryon.  相似文献   

9.
Summary The corticotropin releasing factor (CRF)-synthesizing perikarya and neural processes were detected at ultrastructural level in the hypothalamic paraventricular nucleus and in the median eminence of control and colchicine-pretreated rats. The unlabelled antibody peroxidase-antiperoxidase complex (PAP) immunohistochemical method was used in a pre-embedding manner, on thick, non-frozen sections. In CRF-perikarya, neurosecretory granules (80–120 nm in diameter), free ribosomes, and the rough endoplasmic reticulum were labelled. Unlabelled axon terminals formed asymmetric synapses on CRF-containing perikarya and dendrites. Immunolabelled axons terminated in the palisadic zone of the median eminence.  相似文献   

10.
Zs. Liposits  W.K. Paull 《Peptides》1985,6(6):1021-1036
The corticotropin releasing factor (CRF)-immunoreactive paraventriculo-infundibular neuronal system of long-term adrenalectomized and adrenalectomized-short term dexamethasone treated rats was analyzed at the ultrastructural level using the preembedding peroxidase anti-peroxidase complex (PAP)-immunohistological method. In both groups of animals, parvocellular neurons located in the medial and dorsal subnuclei of the paraventricular nucleus (PVN) showed CRF-like immunoreactivity. The perikarya contained hypertrophied rough endoplasmic reticulum (rER) with dilated cisternae, active Golgi-complexes and numerous neurosecretory granules. The majority of the neurosecretory granules measured 80–120 nm. Dendrites of CRF-immunoreactive neurons contained labeled vesicles, secretory granules, bundles of microtubules, a well-developed smooth endoplasmic reticulum (sER) complex and free ribosomes. Unlabeled terminal boutons of axons were observed to synapse on dendrites and somata of CRF-neurons. In addition, CRF perikarya were found in direct somato-somatic apposition with both CRF-immunopositive and immunonegative parvocellular cells. Retraction of glial processes and the existence of puncta adherentia between the cell membranes characterized these appositions. Varicose CRF axons within the median eminence contained hypertrophied sER, labeled vesicles and neurosecretory granules. The preterminal portions of the CRF-axons were dilated and possessed many labeled 80–120 nm diameter granules. CRF-terminals were greatly enlarged and established direct neurohemal contacts with the external limiting basal lamina of portal vessels without the interposition of tanycytic ependymal foot-processes. These tanycytes were not CRF immunopositive. CRF positive terminals contained clusters of microvesicles, labeled small vesicles and multivesicular bodies, but fewer granular elements than were observed within the preterminals. Many of the labeled organelles were attached to tubules of sER. Occasionally, CRF-axons were observed within the pericapillary space adjacent to portal vessels. The ultrastructural features of CRF-neurons, obtained from adrenalectomized and adrenalectomized plus short-term dexamethasone treated rats did not differ significantly from each other. The hormone content of the entire CRF-neuron was greater in the steroid treated group. Adrenocorticotrophic hormone (ACTH) synthesizing cells in the pars distalis of adrenalectomized-dexamethasone treated rats also showed increased numbers of immunopositive secretory granules (150–320 nm in diameter). These ultrastructural morphological results provide evidence that the function of the paraventriculo-infundibular CRF-system is adrenal steroid hormone dependent and suggest the participation of glial and ependymal elements in the regulation of the system in this hyperfunctional state. The observed membrane specializations are indicative of ephaptic interactions between CRF-neurons and may serve a synchronizing function in adrenalectomized animals.  相似文献   

11.
The results obtained with various methods applied to the cytochemical detection of carbohydrates at an ultrastructural level, confirm the existence of glycoproteins in neurosecretory material in the neurohypophysis as well as in the hypothalamic magnocellular nuclei. This glycoproteic component, however, is not present in all the secretory granules and, according to their cytochemical behaviour, it is possible to distinguish two types of neurosecretory fibres: one where all the granules respond negatively; the other where most of the granules are reactive. The existence of two types of neurons corresponding to these two fibres cannot yet be asserted, but seems very likely, perhaps connected with the hormonal duality of the magnocellular nuclei. The reactions are also positive on the Golgi apparatus, in accordance with its function in glycoprotein synthesis. But the difference of reactivity between the Golgi cisternae and the neurosecretory product suggests that glycoprotein synthesis is still going on in the neurosecretory granules outside the Golgi area.  相似文献   

12.
Summary The development of neurophysin-oxytocin and neurophysinvasopressin containing neurons of the guinea pig was studied in vitro. Supraoptic (SO) and paraventricular (PV) nuclei were explanted from guinea pig foetuses at the 40th day of gestation and cultured in Maximov slides for nearly fifty days. The cultures were observed daily under a phase-contrast microscope. Explants were fixed every five days for observation with the electron microscope. At the time of explantation, magnocellular neurons were still immature. They acquired the morphologic characteristics of mature neurons, with axosomatic synapses, after about 10 days in vitro. After 15–20 days in vitro, they contained in addition neurosecretory granules (NSG), first in the Golgi region, then also dispersed in the cytoplasm. In the oldest culture (45–50 days), signs of granulolysis were regularly found. It appears that magnocellular neurosecretory neurons are able to differentiate in vitro from a primitive state in the absence of specific stimulation.The authors are indebted to M.J. Drian for help with tissue culture, and to D. Le Cren for photographic work  相似文献   

13.
Summary Magnocellular neurones in the supraoptic nucleus of the homozygous Brattleboro rat, which are unable to produce vasopressin, were investigated by immunocytochemistry to identify both the oxytocin cells and the abnormal neurones, which in normal animals would produce vasopressin. The abnormal cell profiles were significantly more rounded than those of the oxytocin cells. Both cell types showed evidence of hyperactivity, but the Golgi apparatus was more extensive in the oxytocin cells, probably as a result of the failure of the abnormal cells to produce vasopressin and its neurophysin and the resultant reduction in hormone packaging. Neurosecretory granules (NSG) 160 nm in diameter were found in the oxytocin perikarya but were absent from the abnormal cell bodies. In addition, a population of small dense granules (SDG) 100 nm in diameter was observed in both types of neurone, in numbers equal to the NSG in oxytocin cells.Injection of a low, non-lethal dose of the axonal transport inhibitor colchicine resulted in a rapid and equal accumulation of both NSG and SDG in oxytocin perikarya and of SDG in the abnormal perikarya after one day. The effects of colchicine were reversed 2–3 days after administration. The SDG, which may contain a co-transmitter or co-hormone substance, are thus produced at a similar rate to NSG, and appear to be transported from the perikarya for subsequent release at the nerve endings.  相似文献   

14.
Summary The general ultrastructural features of the hypothalamo-neurohypophysial system in rats with hereditary hypothalamic diabetes insipidus (DI-rats, Brattleboro strain) are described. There is no decisively distinguishing difference between the neurons of the supraoptic and paraventricular nuclei. The neurons of both nuclei show signs of active protein synthesis. The perikarya of the neurons are markedly hypertrophic, the nuclei are large and the nucleoli prominent. In the cytoplasm there are numerous ribosomes, abundant rough-surfaced endoplasmic reticulum and extensive Golgi complexes. However, very few neurosecretory granules are to be seen. The axons of the hypothalamo-neurohypophysial tract are likewise enlarged and the paucity of neurosecretory granules is a striking feature also in the area of the tract. The majority of nerve endings in the posterior pituitary of DI-rats are devoid of neurosecretory granules. Microvesicles are abundant in the nerve endings and there are findings which suggest that microvesicles are involved either in endoor exocytosis. The signs of active protein synthesis and the concomitant paucity of neurosecretory granules are interpreted to imply transportation of the secretory proteins in an extragranular phase. The possible mode of release of the secretory proteins from the nerve endings and the role of microvesicles therein are discussed.This study has been supported by grants from the Finnish Cultural Foundation and the Sigrid Jusélius Foundation. The collaboration of Professors Antti Arstila and Tapani Vanha-Perttula is gratefully acknowledged.The Brattleboro-rats were kindly provided by Dr. Heinz Valtin, to whom we express our thanks.  相似文献   

15.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

16.
Summary The somatotrophs of the pituitary gland of the male domestic fowl were identified by means of an immuno-electron-microscopic method based on gold as the electron-opaque label and an antibody to growth hormone. Gold particles indicating sites of growth hormone were restricted to cells in which virtually all of the granules were labelled. Little, if any, gold label was found outside the granules in these cells designated as somatotrophs, or at sites outside these cells. The size of these gold-labelled secretory granules presumed to contain growth hormone decreased with age, from a mean sectional diameter of 256±6.2 nm (SEM) at 4–6 weeks to 221±5.7 nm at 11–18 weeks and 205±8.6 nm at 24–30 weeks of age. On the basis of these values for mean sectional diameters the change between the first two periods represents a decrease in granule volume of about 36%. However, during the same period the growth hormone concentration of the granules increased. Accordingly, growth hormone content per granule changed little if at all. In contrast, from 11–18 weeks to 24–30 weeks of age there was a decrease of 31% in growth hormone content per granule. These data indicate that growth hormone packaging in the chicken somatotroph changes with age. The first change results in the production of smaller granules of higher growth hormone concentration. During this period growth hormone content per granule remains relatively constant. The later change results in the production of granules of lower growth hormone content than that of younger animals.This is a paper of the Journal Sciences, New Jersey Agriculture Experimental Station supported in part by the State and Hatch Act Funds and a grant from the National Science Foundation (PMC-8022727)  相似文献   

17.
Summary Neurosecretory cells of the supraoptic-neurohypophysial system of normal mice were investigated with the use of the cytochemical reaction for thiamine pyrophosphatase (TPPase) at the ultrastructural level. In the hypothalamic perikarya dense lead precipitates occur within the cisterns of the mature face of the Golgi apparatus, these being the cisterns that give rise to neurosecretory granules (NSG). Smooth endoplasmic reticulum is occasionally confluent with TPPase-positive Golgi cisterns. Along axons, within swellings, and within terminals distinct profiles of TPPase-positive tubules and cisterns are revealed, apparently part of a network of axonal smooth endoplasmic reticulum (AER). Some NSG appear to be confluent with AER. NSG with TPPase-positive tubular protrusions (likely vestiges of AER) are seen. Apart from reaction product (lead precipitate), the AER often contains an electron dense substance optically similar to that of NSG. TPPase-containing AER is often associated with mitochondria. Profiles of electron-lucent, precipitate-free tubules and cisterns are occasionally seen alongside reactive AER. Optimal TPPase activity in the AER occurs at pH 7.0–7.4, whereas in the Golgi complex intense marking is in the range of pH 6.0–8.5. A faint peppering of precipitate occasionally appears in the AER in controls (incubation medium without substrate), but neither in density nor in extent is this comparable to the reaction product seen after incubation in the presence of TPP. Preliminary comparison has been made between the AER revealed by the TPPase reaction, and that visualized after heavy metal impregnation according to the method of Alonso and Assenmacher (1978a). The nature of the close association between NSG and AER, and the possible roles of this membrane system in neurosecretory cells is discussed.Abbreviations AER axonal smooth endoplasmic reticulum - NSG neurosecretory granules - TPPase thiamine pyrophosphatase - SON supraoptic nucleus Research supported in part by a grant from the Israel Academy of Sciences to M.C.We thank Mrs. Ilana Sabnay for excellent technical assistance  相似文献   

18.
Summary The neurosecretory mediodorsal cells that produce a putative growth hormone of the snail Helisoma duryi were studied in fast-growing virgin snails and in slow-growing reproducing snails. There are about 60 mediodorsal cells in clusters on each side of the cerebral commissure of the central nervous system, and they contain dense-cored granules which are 100–200 nm in diameter. The cells of virgin snails have dense Golgi bodies, scattered ER cisternae, and few granules, while those of reproducing snails have pale Golgi bodies, stacked ER cisternae, and numerous granules. Thus the mediodorsal cells of the virgin snails appear to be more active synthetically than those of the reproducing snails. The cells near the endocrine dorsal bodies contain many dorsal body precesses in their membrane interdigitations. There are junction-like interactions between some of the interdigitations. Gap junction-like contacts are seen between mediodorsal cells and glial cells. The axon endings of the mediodorsal cells at the neurohemal area in the labial nerve show more release profiles in virgin snails than in reproducing snails. A daily pattern of release has been observed in reproducing snails, and rates of release are higher in the evening than in the morning.  相似文献   

19.
In the region of the distal optic chiasma of each optic lobe of Periplaneta americana, there is a group of about 120 monopolar neurosecretory cells. These cells do not stain with paraldehyde fuchsin but remain acidophilic after oxidation. They stain red or sometimes indigo with the azan technique. Histochemically, the neurosecretory material is positive for protein and the amino acids tryptophan and arginine but negative for 1, 2-glycols and strongly acidic groups. At the ultrastructural level, the cytoplasm of the cells contain many elementary neurosecretory granules 100 to 170 nm in dia. The cells also contain well-developed Golgi bodies and endoplasmic retieulum. The axons from these cells run toward the interior of the optic lobe. In this region, axons containing dense granules (mean diameter 70 nm) and synaptic vesicles synapse onto the axons from the neurosecretory cells. The neurosecretory axons then cross over to the anterior side of the optic lobe and run towards the brain. The function of these neurosecretory cells is unknown, but they may be involved with photoperiodically controlled activity rhythms.  相似文献   

20.
The numbers, distribution, and types of neurons in a pedal disk of Hydra littoralis were determined from electron micrographs of 567 serial sections approximately 0.12 micron thick. Of 248 neurons counted, we found 234 ganglion cells in the epidermis and 14 in the gastrodermis. No sensory cells with surface projecting cilia were observed in either epithelial layer of the foot region. We found ciliary structures in 196 (84%) of the epidermal neurons: 55 had a well defined cilium-stereociliary complex, 30 had a cilium lacking stereocilia, and 111 could not be classified. In contrast, 38 epidermal neurons lacked evidence of ciliary structures; 10 of the 14 gastrodermal neurons had one or more centrioles, some with an elaborate pericentriolar rootlet system, but no cilium or stereocilia. Neuronal perikarya could be classified into those with dense heterochromatic nuclei and those with light granular nuclei; often these two nuclear variations were observed in paired or triad arrangements of epidermal neurons. In addition, 68 (29%) of the epidermal neurons were characterized by the presence of small dense granules (115-178 nm in diameter) in the cytoplasm around the periciliary space. Although 32 pairs and 5 triads of contiguous neuronal perikarya were present in the epidermis, only two paired neuronal perikarya were present in the gastrodermis. The major concentration of neurons was approximately midway between the basal surface and the region of transition of epitheliomuscular cells into glandulomuscular cells. There was no evidence of large neuronal aggregations suggestive of ganglia in the pedal disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号