首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

2.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA′-′lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA′-′lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA+) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

3.
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a ΔphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.  相似文献   

4.
The production of hydrogen cyanide (HCN) and 2,4-diacetylphloroglucinol (DAPG) is a major factor in the control of soil-borne diseases by Pseudomonas fluorescens CHA0. We investigated the impact of different biotic factors on the expression of HCN–in comparison to DAPG biosynthetic genes in the rhizosphere. To this end, the influence of plant cultivar, pathogen infection, and coinoculation with other biocontrol strains on the expression of hcnA-lacZ and phlA-lacZ fusion in strain CHA0 was monitored on the roots of bean. Interestingly, all the tested factors influenced the expression of the two biocontrol traits in a similar way. For both genes, we observed a several-fold higher expression in the rhizosphere of cv. Derakhshan compared with cvs. Goli and Naz, although bacterial rhizosphere colonization levels were similar on all cultivars tested. Root infection by Rhizoctonia solani stimulated total phlA and hcnA gene expression in the bean rhizosphere. Coinoculation of strain CHA0 with DAPG-producing P. fluorescens biocontrol strains Pf-68 and Pf-100 did neither result in a substantial alteration of hcnA nor of phlA expression in CHA0 on bean roots. To our best knowledge, this is the first study investigating the impact of biotic factors on HCN production by a bacterial biocontrol strain in the rhizosphere.  相似文献   

5.

Background

Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL).

Methodology/Principal Findings

We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/−0.3 n = 3), CHA6.8 (FA ratio 1.08+/−0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/−0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/−0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/−0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/−0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure.

Conclusion

Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.  相似文献   

6.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

7.
A series of Methanosarcina barkeri mutants lacking the genes encoding the enzymes involved in the C1 oxidation/reduction pathway were constructed. Mutants lacking the methyl-tetrahydromethanopterin (H4MPT):coenzyme M (CoM) methyltransferase-encoding operon (Δmtr), the methylene-H4MPT reductase-encoding gene (Δmer), the methylene-H4MPT dehydrogenase-encoding gene (Δmtd), and the formyl-methanofuran:H4MPT formyl-transferase-encoding gene (Δftr) all failed to grow using either methanol or H2/CO2 as a growth substrate, indicating that there is an absolute requirement for the C1 oxidation/reduction pathway for hydrogenotrophic and methylotrophic methanogenesis. The mutants also failed to grow on acetate, and we suggest that this was due to an inability to generate the reducing equivalents needed for biosynthetic reactions. Despite their lack of growth on methanol, the Δmtr and Δmer mutants were capable of producing methane from this substrate, whereas the Δmtd and Δftr mutants were not. Thus, there is an Mtr/Mer bypass pathway that allows oxidation of methanol to the level of methylene-H4MPT in M. barkeri. The data further suggested that formaldehyde may be an intermediate in this bypass; however, no methanol dehydrogenase activity was found in Δmtr cell extracts, nor was there an obligate role for the formaldehyde-activating enzyme (Fae), which has been shown to catalyze the condensation of formaldehyde and H4MPT in vitro. Both the Δmer and Δmtr mutants were able to grow on a combination of methanol plus acetate, but they did so by metabolic pathways that are clearly distinct from each other and from previously characterized methanogenic pathways.  相似文献   

8.
9.
10.
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.  相似文献   

11.
12.
Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest.  相似文献   

13.
Laloue M  Fox JE 《Plant physiology》1989,90(3):899-906
As part of the study of the possible role(s) of CBF-1, a cytokinin-binding protein abundant in wheat embryo, a cytokinin oxidase was found in wheat (Triticum aestivum L.) germ and partially purified by conventional purification techniques and high performance chromatofocusing. This preparation catalyzes conversion of N6-(Δ2-isopentenyl)adenosine to adenosine at a Vmax of 0.4 nanomol per milligram protein per minute at 30°C and pH 7.5, the Km being 0.3 micromolar. This high affinity and the apparent molecular weight of 40,000 estimated by high performance gel permeation on a Spherogel TSK-3000 SW column indicate that this enzyme is different from other cytokinin oxidases previously reported. Oxygen is required for the reaction, as for other cytokinin oxidases already described. N6-(Δ2-isopentenyl)adenine and zeatin riboside are also degraded, but N6-(Δ2-isopentenyl)adenosine-5′-monophosphate is apparently not a substrate. Benzyladenine is degraded, but to a small extent, and it inhibits slightly the degradation of N6-(Δ2-isopentenyl)adenosine. The degradation of N6-(Δ2-isopentenyl)adenosine is strongly inhibited by diphenylurea and its highly active derivative N-(2-chloro-4-pyridyl)-N′-phenylurea.  相似文献   

14.
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.  相似文献   

15.
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.  相似文献   

16.
Until recently, polarographic methods for measuring the time course of transient changes in the rate of oxygen consumption (ΔQO2) have been applied only to tissue preparations containing thousands of cells. Here, we describe ΔQO2 measurements on the lateral ocellus of the barnacle (Balanus eburneus) which contains only three photoreceptor cells. The decrement of partial pressure of oxygen (ΔPO2) elicited by an 80 ms flash of light was measured near the cells with a microelectrode and the ΔQO2 was calculated from the ΔPO2 using a model of diffusion with spherical symmetry. As shown by mathematical simulation, the exact shape of the preparation is not crucial for our measurements of the time course of the ΔQO2. For a given ΔQO2, the model describes correctly the attenuation of the ΔPO2 measured at increased distances from the preparation. To know more about the mechanisms controlling the ΔQO2, we compared it with the electrical response of the photoreceptor cells: both responses have a similar spectral dependence, but only the ΔQO2 was abolished by a 10-min exposure to 50 μM dinitrophenol or to 3 mM amytal. We conclude that the ΔQO2 reflects an increase in mitochondrial respiration and that it is initiated by the phototransformation of rhodopsin, as was already found in the honeybee drone retina (Dimitracos and Tsacopoulos, 1985; Jones and Tsacopoulos, 1987).  相似文献   

17.
18.
The O-antigen (Oag) component of lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is synthesized by the O-antigen polymerase, WzySf. Oag chain length is regulated by chromosomally encoded WzzSf and pHS-2 plasmid-encoded WzzpHS2. To identify functionally important amino acid residues in WzySf, random mutagenesis was performed on the wzySf gene in a pWaldo-TEV-GFP plasmid, followed by screening with colicin E2. Analysis of the LPS conferred by mutated WzySf proteins in the wzySf-deficient (Δwzy) strain identified 4 different mutant classes, with mutations found in periplasmic loop 1 (PL1), PL2, PL3, and PL6, transmembrane region 2 (TM2), TM4, TM5, TM7, TM8, and TM9, and cytoplasmic loop 1 (CL1) and CL5. The association of WzySf and WzzSf was investigated by transforming these mutated wzySf plasmids into a wzySf- and wzzSf-deficient (Δwzy Δwzz) strain. Comparison of the LPS profiles in the Δwzy and Δwzy Δwzz backgrounds identified WzySf mutants whose polymerization activities were WzzSf dependent. Colicin E2 and bacteriophage Sf6c sensitivities were consistent with the LPS profiles. Analysis of the expression levels of the WzySf-GFP mutants in the Δwzy and Δwzy Δwzz backgrounds identified a role for WzzSf in WzySf stability. Hence, in addition to its role in regulating Oag modal chain length, WzzSf also affects WzySf activity and stability.  相似文献   

19.
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a CanR mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the CanR mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.  相似文献   

20.
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号