首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan’s population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72–85 in the affected and at- risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future. Received: 4 December 1996 / Accepted: 5 March 1997  相似文献   

2.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

3.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

4.
Autosomal dominant dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease (MJD) are neurodegenerative disorders caused by CAG trinucleotide repeat expansions. An inverse correlation of age at onset with the length of the expanded CAG trinucleotide repeats has been demonstrated, and the intergenerational instability of the length of the CAG trinucleotide repeats, which is more prominent in paternal than in maternal transmissions, has been shown to underlie the basic mechanisms of anticipation in DRPLA and MJD. Our previous observations on DRPLA and MJD pedigrees, as well as a review of the literature, have suggested that the numbers of affected offspring exceed those of unaffected offspring, which is difficult to explain by the Mendelian principle of random segregation of alleles. In the present study, we analyzed the segregation patterns in 211 transmissions in 24 DRPLA pedigrees and 80 transmissions in 7 MJD pedigrees, with the diagnoses confirmed by molecular testing. Significant distortions in favor of transmission of the mutant alleles were found in male meiosis, where the mutant alleles were transmitted to 62% of all offspring in DRPLA (chi2 = 7.69; P<.01) and 73% in MJD (chi2 = 6.82; P<.01). The results were consistent with meiotic drive in DRPLA and MJD. Since more prominent meiotic instability of the length of the CAG trinucleotide repeats is observed in male meiosis than in female meiosis and meiotic drive is observed only in male meiosis, these results raise the possibility that a common molecular mechanism underlies the meiotic drive and the meiotic instability in male meiosis.  相似文献   

5.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

6.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

7.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

8.
9.
谭建强  汪萍  胡启平  李松峰  舒伟  马军  方玲  华荣  丁晔  袁志刚 《遗传》2009,31(6):605-610
为探讨广西地区脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)患者各种亚型类型特点及分布状况, 应用聚合酶链反应(Polymerase chain reaction, PCR)、毛细管电泳(Capillary electrophoresis, CE)片段分析等技术检测分析遗传性共济失调患者的SCA1、SCA2、SCA3/MJD、SCA6、SCA7和SCA12 (CAG)n突变。在6个SCA家系共检出21例患者和19例症状前患者均为SCA3/MJD突变, CAG重复数分别为59~70次和60~73次。未检测到SCA1、SCA2、SCA6、SCA7和SCA12(CAG)n突变。研究表明, 广西地区的SCA病人主要为SCA3/MJD型, 患者的CAG重复数低于过去的报道。  相似文献   

10.
BACKGROUND: Several neurological disorders have recently been explained through the discovery of expanded DNA repeat sequences. Among these is Machado-Joseph disease, one of the most common spinocerebellar ataxias (MJD/SCA3), caused by a CAG repeat expansion on chromosome 14. A useful way of detecting repeat sequence mutations is offered by the repeat expansion detection method (RED), in which a thermostable ligase is used to detect repeat expansions directly from genomic DNA. We have used RED to detect CAG expansions in families with either MJD/SCA3 or with previously uncharacterized spinocerebellar ataxia (SCA). MATERIALS AND METHODS: Five MJD/SCA3 families and one SCA family where linkage to SCA1-5 had been excluded were analyzed by RED and polymerase chain reaction (PCR). RESULTS: An expansion represented by RED products of 180-270 bp segregated with MJD/SCA3 (p < 0.00001) in five families (n = 60) and PCR products corresponding to 66-80 repeat copies were observed in all affected individuals. We also detected a 210-bp RED product segregating with disease (p < 0.01) in a non-SCA1-5 family (n = 16), suggesting involvement of a CAG expansion in the pathophysiology. PCR analysis subsequently revealed an elongated MJD/SCA3 allele in all affected family members. CONCLUSIONS: RED products detected in Machado-Joseph disease families correlated with elongated PCR products at the MJD/SCA3 locus. We demonstrate the added usefulness of RED in detecting repeat expansions in disorders where linkage is complicated by phenotyping problems in gradually developing adult-onset disorders, as in the non-SCA1-5 family examined. The RED method is informative without any knowledge of flanking sequences. This is particularly useful when studying diseases where the mutated gene is unknown. We conclude that RED is a reliable method for analyzing expanded repeat sequences in the genome.  相似文献   

11.
The autosomal dominant late onset spinocerebellar ataxias (SCAs) are genetically heterogeneous. Three genes, SCA1 on 6p, SCA2 on 12q and MJD1 on 14q, have been isolated for SCA1, SCA2 and Machado-Joseph disease (MJD), respectively. In these three autosomal dominant disorders the mutation is an expanded CAG repeat. Evidence for heterogeneity in families not linked to the SCA1, SCA2 and MJD loci is provided by the mapping of SCA loci to chromosomes 16q, 11cen and 3p. A total of 14 South African kindreds and 22 sporadic individuals with SCA were investigated for the expanded SCA1 and MJD repeats. None of the families nor the sporadic individuals showed expansion of the MJD repeat. Expanded SCA1 and CAG repeats were found to cosegregate with the disorder in six of the families tested and were also observed in one sporadic individual with a negative family history of SCA. The use of the microsatellite markers D6S260, D6S89 and D6S274 provided evidence that the expanded SCA1 repeats segregated with three distinct haplotypes in the six families. Use of the highly polymorphic tightly linked microsatellite markers is still important as this stage, particularly where this coincides with the possibility of a homozygous genotype with the trinucleotide repeat marker. Importantly, our molecular findings indicate: (1) an absence of MJD expanded repeats underlying SCA; (2) the major disease in this group is due to mutations in the SCA1 gene; and (3) the familial disorder in the majority population group (i.e. mixed ancestry) in the Western Cape region of South Africa is most likely to be the result of two distinct founder events. Received: 4 November 1996 / Accepted: 6 February 1997  相似文献   

12.
常染色体显性脊髓小脑型共济失调(Autosomal dominant spinocerebellar ataxias, ADCAs)是一种神经系统退行性疾病, 具有高度的遗传异质性, 其中脊髓小脑型共济失调3型(Spinocerebellar ataxias type 3, SCA3)是一种常见的类型。文章通过PCR扩增广西一个脊髓小脑共济失调家系SCA3/MJD基因片段, 用毛细管电泳和测序方法检测了SCA3/MJD基因的CAG重复序列大小、传递特点以及SCA3/MJD基因的变异。结果显示:家系的所有4名患者和3名无症状携带者(Asymptomatic carrier)的SCA3/MJD基因第10外显子中存在异常扩增的CAG重复序列, 重复次数为64~71次; CAG重复次数在具有cgg等位基因的正常个体间传递时保持不变, 提示cgg等位基因不是正常个体两代间CAG重复序列稳定性的影响因素。SCA3/MJD基因中另有两个单碱基点突变, 一个是内含子区的杂合性突变(IVS9-113 T>C), 另一个是外显子区域的错义突变(220 G>A, 220 Glu>Gly)。这两个点突变为首次报道, 但尚不能明确这两个新的点突变对SCA3表型的影响。  相似文献   

13.
脊髓小脑共济失调第7型的临床特征及基因突变研究   总被引:1,自引:0,他引:1  
殷鑫浈  张宝荣  吴鼎文  田均  张灏 《遗传》2007,29(6):688-692
对一脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)家系的患者进行临床特征及相关基因突变研究。对该家系进行详细的病史采集, 并对患者行视力、眼底血管造影、眼底拍照、视觉诱发电位、视网膜电图以及头颅MRI等辅助检查; 采用聚合酶链反应分别扩增SCA1、SCA2、SCA3、SCA6、SCA7、SCA17及DRPLA基因的CAG重复序列, 用8%变性聚丙烯酰胺凝胶电泳及直接测序进行突变分析。结果2名患者主要表现为小脑性共济失调、视力下降、眼底视网膜色素变性、小脑和脑干萎缩; 并存在SCA7基因的突变, 而未发现SCA1、SCA2、SCA3、SCA6、SCA17及DRPLA基因突变。说明该家系为SCA7突变家系, SCA7基因中CAG三核苷酸重复拷贝数的异常扩增是其致病原因。  相似文献   

14.
The dominant cerebellar ataxias (ADCAs) represent a clinically and genetically heterogeneous group of disorders linked by progressive deterioration in balance and coordination. The utility of genetic classification of the ADCAs has been highlighted by the striking variability in clinical phenotype observed within families and the overlap in clinical phenotype observed between those with different genotypes. The recent demonstration that spinocerebellar ataxia type 2 (SCA2) is caused by a CAG repeat expansion within the ataxin-2 gene has allowed us to determine the frequency of SCA2 compared with SCA1, SCA3/Machado-Joseph disease (MJD), and dentatorubropallidoluysian atrophy (DRPLA) in patients with sporadic and inherited ataxia. SCA2 accounts for 13% of patients with ADCA (without retinal degeneration), intermediate between SCA1 and SCA3/MJD, which account for 6% and 23%, respectively. Together, SCA1, SCA2, and SCA3/MJD constitute >40% of the mutations leading to ADCA I in our population. No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3. No overlap in ataxin-2 allele size between normal and disease chromosomes, or intermediate-sized alleles, were observed. Repeat length correlated inversely with age at onset, accounting for approximately 80% of the variability in onset age. Haplotype analysis provided no evidence for a single founder chromosome, and diverse ethnic origins were observed among SCA2 kindreds. In addition, a wide spectrum of clinical phenotypes was observed among SCA2 patients, including typical mild dominant ataxia, the MJD phenotype with facial fasciculations and lid retraction, and early-onset ataxia with a rapid course, chorea, and dementia.  相似文献   

15.
16.
Dentatorubral pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder caused by expansion of an unstable, tandemly repeated trinucleotide sequence, (CAG)n, in a novel gene on human chromosome 12p12-pter. Molecular diagnosis of DRPLA uses the polymerase chain reaction (PCR) to amplify and characterize the number of CAG repeats carried by individuals. The PCR analysis is fairly straightforward when two alleles are identified. However, when only a single allele is observed, it is difficult to know whether the sample is homozygous or whether there was failure to amplify the second allele. We describe a Southern analysis for detection of the DRPLA CAG repeat, providing an independent method for the assessment of expanded alleles. Received: 15 May 1996 / Revised: 23 September 1996  相似文献   

17.
The mutation responsible for Machado-Joseph disease (MJD) has been identified as an expansion of a CAG trinucleotide repeat in a novel gene on chromosome 14q32.1. The CAG repeat tract is followed by C or G, and alleles are thereby divided into two types on the basis of molecular configuration, (CAG)nC and (CAG)nG. We have studied the relationship between the repeat length and the configuration in 38 patients from 28 Japanese families with MJD, and 31 unrelated normal Japanese subjects. The CAG repeat length in 100 normal alleles ranged from 13 to 37 repeats, while 38 MJD patients had one expanded allele with 64 to 84 repeats. Surprisingly, the expanded alleles had exclusively the (CAG)nC configuration, while both (CAG)nC and (CAG)nG were seen in normal alleles from MJD and control subjects. Furthermore, in normal alleles, the CAG repeat tract was significantly longer in (CAG)nC than in (CAG)nG. These findings suggest that the (CAG)nC configuration is related to repeat instability of the MJD gene. Received: 23 April 1996 / Revised: 24 June 1996  相似文献   

18.
Spinocerebellar ataxia type 3 (SCA3), or Machado—Joseph disease (MJD), is an autosomal dominantly-inherited disease that produces progressive problems with movement. It is caused by the expansion of an area of CAG repeats in a coding region of ATXN3. The number of repeats is inversely associated with age at disease onset (AO) and is significantly associated with disease severity; however, the degree of CAG expansion only explains 50 to 70% of variance in AO. We tested two SNPs, rs709930 and rs910369, in the 3’ UTR of ATXN3 gene for association with SCA3/MJD risk and with SCA3/MJD AO in an independent cohort of 170 patients with SCA3/MJD and 200 healthy controls from mainland China. rs709930 genotype frequencies were statistically significantly different between patients and controls (p = 0.001, α = 0.05). SCA3/MJD patients carrying the rs709930 A allele and rs910369 T allele experienced an earlier onset, with a decrease in AO of approximately 2 to 4 years. The two novel SNPs found in this study might be genetic modifiers for AO in SCA3/MJD.  相似文献   

19.
The objective of this study was to analyze the clinical manifestation, imaging characteristics, genotype, and the relationship between the three aforementioned parameters in two pedigrees suffering from spinocerebellar ataxia. To evaluate the clinical manifestation of the two pedigrees and to compare the characteristics, we performed the MRI analysis of some patients from both pedigrees, while 2 ml of the peripheral blood sample was collected for gene analysis. The gene analysis data showed that pedigree 1 was certified spinocerebellar ataxia type-2 (SCA2); the CAG repeats in the proband, proband’s mother, and proband’s brother were 44, 36, and 38, respectively. The MRI revealed brainstem cerebellar atrophy and “cross sign” and “ordinate sign” of pons. Pedigree 2 was certified SCA1; the CAG repeats of the proband, proband’s aunt, and proband’s asymptomatic cousin were 60, 51, and 52, respectively. The MRI revealed cerebellar atrophy in these individuals. We, therefore, concluded that it was difficult to diagnose the SCA subset solely through the clinical manifestation. The imaging characteristics analysis and final diagnosis depended basically on gene analysis data.  相似文献   

20.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号