首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of the gene for a male ejaculatory protein, Acp26Aa, has been shown to be driven by positive selection when nonsibling species in the Drosophila melanogaster subgroup are compared. To know if selection has been operating in the recent past and to understand the details of its dynamics, we obtained DNA sequences of Acp26Aa and the nearby Acp26Ab gene from 39 D. melanogaster chromosomes. Together with the 10 published sequences, we analyzed 49 sequences from five populations in four continents. The southern African population is somewhat differentiated from all other populations, but its nucleotide diversity is lower at these two loci. We find the following results for Acp26Aa: (1) The R: S (replacement : silent changes) ratio is significantly higher in the between-species comparisons than in the within-species data by the McDonald and Kreitman test. Positive selection is probably responsible for the excess of amino acid replacements between species. (2) However, within-species nucleotide diversity is high. Neither the Tajima test nor the Fu and Li test indicates a reduction in nucleotide diversity due to positive selection in the recent past. (3) The newly derived nucleotides in D. melanogaster are at high frequency significantly more often than predicted by the neutral equilibrium. Since the nearby Acp26Ab gene does not show these patterns, these observations cannot be attributed to the characteristics of this chromosomal region. We suggest that positive selection is active, but may be weak, for each amino acid change in the Acp26Aa gene.   相似文献   

2.
M Aguadé 《Genetics》1998,150(3):1079-1089
The Acp26Aa and Acp26Ab genes that code for male accessory gland proteins are tandemly arranged in the species of the Drosophila melanogaster complex. An approximately 1.6-kb region encompassing both genes has been sequenced in 10, 24, and 18 lines from Spain, Ivory Coast, and Malawi, respectively; the previously studied 10 lines from North Carolina have also been included in the analyses. A total of 110 nucleotide and 4 length polymorphisms were detected. Silent variation for the whole Acp26A region was slightly higher in African than in non-African populations, while for both genes nonsynonymous variation was similar in all populations studied. Based on Fst estimates no major genetic differentiation was detected between East and West Africa, while in general non-African populations were strongly differentiated from both African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites revealed that directional selection acting on amino acid replacement changes has driven the evolution of the Acp26Aa protein in the last 2.5 myr.  相似文献   

3.
Many genes pertaining to male reproductive functions have been shown to evolve rapidly between species, and evidence increasingly suggest the influence of positive Darwinian selection. The accessory gland protein gene (Acp26Aa) of Drosophila is one such example. In order to understand the mechanism of selection, it is often helpful to examine the pattern of polymorphism. We report here that the level of amino acid polymorphism in the N-terminal quarter of Acp26Aa is high in Drosophila melanogaster and is unprecedented in its sibling species Drosophila mauritiana. We postulate that (1) this N-terminal segment may play a role in sperm competition, and (2) D. mauritiana may have been under much more intense sexual selection than other species. Both postulates have important ramifications and deserve to be tested rigorously.  相似文献   

4.
M Aguadé 《Genetics》1999,152(2):543-551
Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  相似文献   

5.
Mating stimulates the rate of egg-laying by female insects. In Drosophila melanogaster this stimulation is initially caused by seminal fluid molecules transferred from the male (Acps or accessory gland proteins; reviewed in [1] [2] [3]). Egg-laying is a multi-step process. It begins with oocyte release by the ovaries, followed by egg movement down the oviducts and the deposition of eggs onto the substratum. Although two Acps are known to stimulate egg-laying [4] [5], they were detected by assays that do not discriminate between the steps of this process or allow examination of its earliest changes [4] [5] [6] [7]. To determine how egg-laying is regulated, we developed a generally applicable assay to separate the process into quantifiable steps, allowing us to assess the ovulation pattern and rate of egg movement. As the steps are interdependent yet potentially subject to independent controls, we determined the contribution of each step and effector independent of the others. We used a statistical method [8] [9] that separately considers and quantifies each 'path' to a common end. We found that the prohormone-like molecule Acp26Aa [5] [10] stimulates the first step in egg-laying - release of oocytes by the ovary. During mating, Acp26Aa begins to accumulate at the base of the ovaries, a position consistent with action on the ovarian musculature to mediate oocyte release. Understanding how individual Acps regulate egg-laying in fruitflies will help provide a full molecular picture of insects' prodigious fertility, of reproductive hormones, and of the roles of these rapidly evolving proteins [11] [12].  相似文献   

6.
Drosophila melanogaster male accessory gland proteins (Acps) that are transferred in the ejaculate with sperm mediate post-mating competition for fertilizations between males. The actions of Acps include effects on oviposition and ovulation, receptivity and sperm storage. Two Acps that modulate egg production are Acp26Aa (ovulin) and Acp70A (the sex peptide). Acp26Aa acts specifically on the process of ovulation (the release of mature eggs from the ovaries), which is initiated 1.5 h after mating. In contrast, sperm storage can take as long as 6-9 h to complete. Initial ovulations after matings by virgin females will therefore occur before all sperm are fully stored and the extra eggs initially laid as a result of Acp26Aa transfer are expected to be inefficiently fertilized. Acp26Aa-mediated release of existing eggs should not cause a significant energetic cost or lead to a decrease in female lifespan assuming, as seems likely, that the energetic cost of egg laying comes from de novo egg synthesis (oogenesis) rather than from ovulation. We tested these predictions using Acp26Aa(1) mutant males that lack Acp26Aa but are normal for other Acps and Acp26Aa(2) males that transfer a truncated but fully functional Acp26Aa protein. Females mating with Acp26Aa(2) (truncation) males that received functional Acp26Aa produced significantly more eggs following their first matings than did mates of Acp26Aa(1) (null) males. However, as predicted above, these extra eggs, which were laid as a result of Acp26Aa transfer to virgin females, showed significantly lower egg hatchability. Control experiments indicated that this lower hatchability was due to lower rates of fertilization at early post-mating times. There was no drop in egg hatchability in subsequent non-virgin matings. In addition, as predicted above, females that did or did not receive Acp26Aa did not differ in survival, lifetime fecundity or lifetime progeny, indicating that Acp26Aa transfer does not represent a significant energetic cost for females and does not contribute to the survival cost of mating. Acp26Aa appears to remove a block to oogenesis by causing the clearing out of existing mature eggs and, thus, indirectly allowing oogenesis to be initiated immediately after mating. The results show that subtle processes coordinate the stimulation of egg production and sperm storage in mating pairs.  相似文献   

7.
In Drosophila melanogaster, the Acp70A gene, which is involved in the postmating reactions of the female, is a single-copy gene. However, in Drosophila subobscura, the gene is duplicated and both copies are transcribed. To study the molecular evolution of the duplication, a 2.1- kb fragment encompassing both copies of the duplication was sequenced for 10 lines of D. subobscura and one line of Drosophila madeirensis. Estimates of the divergence between the two copies of the duplicated region and between the two species studied, D. subobscura and D. madeirensis, revealed that both copies of the Acp70a gene had evolved independently since their duplication. The ratio of nonsynonymous to silent divergence between copies was generally higher than one. The McDonald and Kreitman test revealed an excess of nonsynonymous changes fixed since the duplication and before the split of the D. subobscura and D. madeirensis lineages. These results point to natural selection driving protein evolution after the duplication. Specifically, adaptive evolution appears to have caused the initial differentiation between copies of the N-terminal parts of the proteins, while purifying selection could be responsible for the high conservation of the C- terminal parts.   相似文献   

8.
Eukaryotic genomes can usurp enzymatic functions encoded by mobile elements for their own use. A particularly interesting kind of acquisition involves the domestication of retroviral envelope genes, which confer infectious membrane-fusion ability to retroviruses. So far, these examples have been limited to vertebrate genomes, including primates where the domesticated envelope is under purifying selection to assist placental function. Here, we show that in Drosophila genomes, a previously unannotated gene (CG4715, renamed Iris) was domesticated from a novel, active Kanga lineage of insect retroviruses at least 25 million years ago, and has since been maintained as a host gene that is expressed in all adult tissues. Iris and the envelope genes from Kanga retroviruses are homologous to those found in insect baculoviruses and gypsy and roo insect retroviruses. Two separate envelope domestications from the Kanga and roo retroviruses have taken place, in fruit fly and mosquito genomes, respectively. Whereas retroviral envelopes are proteolytically cleaved into the ligand-interaction and membrane-fusion domains, Iris appears to lack this cleavage site. In the takahashii/suzukii species groups of Drosophila, we find that Iris has tandemly duplicated to give rise to two genes (Iris-A and Iris-B). Iris-B has significantly diverged from the Iris-A lineage, primarily because of the "invention" of an intron de novo in what was previously exonic sequence. Unlike domesticated retroviral envelope genes in mammals, we find that Iris has been subject to strong positive selection between Drosophila species. The rapid, adaptive evolution of Iris is sufficient to unambiguously distinguish the phylogenies of three closely related sibling species of Drosophila (D. simulans, D. sechellia, and D. mauritiana), a discriminative power previously described only for a putative "speciation gene." Iris represents the first instance of a retroviral envelope-derived host gene outside vertebrates. It is also the first example of a retroviral envelope gene that has been found to be subject to positive selection following its domestication. The unusual selective pressures acting on Iris suggest that it is an active participant in an ongoing genetic conflict. We propose a model in which Iris has "switched sides," having been recruited by host genomes to combat baculoviruses and retroviruses, which employ homologous envelope genes to mediate infection.  相似文献   

9.
The ability to taste phenylthiocarbamide (PTC) is a classic phenotype that has long been known to vary in human populations. This phenotype is of genetic, epidemiologic, and evolutionary interest because the ability to taste PTC is correlated with the ability to taste other bitter substances, many of which are toxic. Thus, variation in PTC perception may reflect variation in dietary preferences throughout human history and could correlate with susceptibility to diet-related diseases in modern populations. To test R. A. Fisher's long-standing hypothesis that variability in PTC perception has been maintained by balancing natural selection, we examined patterns of DNA sequence variation in the recently identified PTC gene, which accounts for up to 85% of phenotypic variance in the trait. We analyzed the entire coding region of PTC (1,002 bp) in a sample of 330 chromosomes collected from African (n=62), Asian (n=138), European (n=110), and North American (n=20) populations by use of new statistical tests for natural selection that take into account the potentially confounding effects of human population growth. Two intermediate-frequency haplotypes corresponding to "taster" and "nontaster" phenotypes were found. These haplotypes had similar frequencies across Africa, Asia, and Europe. Genetic differentiation between the continental population samples was low (FST=0.056) in comparison with estimates based on other genes. In addition, Tajima's D and Fu and Li's D and F statistics demonstrated a significant deviation from neutrality because of an excess of intermediate-frequency variants when human population growth was taken into account (P<.01). These results combine to suggest that balancing natural selection has acted to maintain "taster" and "nontaster" alleles at the PTC locus in humans.  相似文献   

10.
Chemoperception plays a key role in adaptation and speciation in animals, and the senses of olfaction and gustation are mediated by gene families which show large variation in repertoire size among species. In Drosophila, there are around 60 loci of each type and it is thought that ecological specialization influences repertoire size, with increased pseudogenization of loci. Here, we analyse the size of the gustatory and olfactory repertoires among the genomes of 12 species of Drosophila . We find that repertoire size varies substantially and the loci are evolving by duplication and pseudogenization, with striking examples of lineage-specific duplication. Selection analyses imply that the majority of loci are subject to purifying selection, but this is less strong in gustatory loci and in loci prone to duplication. In contrast to some other studies, we find that few loci show statistically significant evidence of positive selection. Overall genome size is strongly correlated with the proportion of duplicated chemoreceptor loci, but genome size, specialization and endemism may be interrelated in their influence on repertoire size.  相似文献   

11.
A long‐held dogma in comparative neurobiology has been that the number of neurons under a given area of cortical surface is constant. As such, the attention of those seeking to understand the genetic basis of brain evolution has focused on genes with functions in the lateral expansion of the developing cerebral cortex. However, new data suggest that cortical cytoarchitecture is not constant across primates, raising the possibility that changes in radial cortical development played a role in primate brain evolution. We present the first analysis of a gene with functions relevant to this dimension of brain evolution. We show that NIN, a gene necessary for maintaining asymmetric, neurogenic divisions of radial glial cells (RGCs), evolved adaptively during anthropoid evolution. We explored how this selection relates to neural phenotypes and find a significant association between selection on NIN and neonatal brain size in catarrhines. Our analyses suggest a relationship with prenatal neurogenesis and identify the human data point as an outlier, possibly explained by postnatal changes in development on the human lineage. A similar pattern is found in platyrrhines, but the highly encephalized genus Cebus departs from the general trend. We further show that the evolution of NIN may be associated with variation in neuron number not explained by increases in surface area, a result consistent with NIN's role in neurogenic divisions of RGCs. Our combined results suggest a role for NIN in the evolution of cortical development.  相似文献   

12.

Background  

New genes generated by retroposition are widespread in humans and other mammalian species. Usually, this process copies a single parental gene and inserts it into a distant genomic location. However, retroposition of two adjacent parental genes, i.e. co-retroposition, had not been reported until the hominoid chimeric gene, PIPSL, was identified recently. It was shown how two genes linked in tandem (phosphatidylinositol-4-phosphate 5-kinase, type I, alpha, PIP5K1A and proteasome 26S subunit, non-ATPase, 4, PSMD4) could be co-retroposed from a single RNA molecule to form this novel chimeric gene. However, understanding of the origination and biological function of PIPSL requires determination of the coding potential of this gene as well as the evolutionary forces acting on its hominoid copies.  相似文献   

13.
14.
Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1), which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.  相似文献   

15.
Earlier experiments have shown that the evolution of postponed senescent populations can be achieved by selection on either demographic or stress resistance characters. Both types of selection have produced results in which survival characters (stress resistance and longevity) have apparently traded-off against early-life fecundity. Here we present the results of a series of experiments in which an environmental variable — the level of live yeast inoculate applied to the substrate — produces a qualitatively similar phenotypic response: longevity and starvation resistance are enhanced by lower yeast levels, at the expense of fecundity. For the starvation resistance versus fecundity experiments we show a negative and linear relationship between the norms of reaction for each character across a gradient of yeast levels. This phenotypic trade-off is stable across the 20 populations and 4 selection treatments reported on here, and its general agreement with earlier selection results suggests that the evolutionary response and the phenotypically plastic response may share a common physiological basis. However, an important discrepancy in the lifetime fecundity data between the selection response and the dietary manipulations preclude strict analogy. The results broadly conform to a simple “Y-model” of allocation, in which a limited resource is divided between survival and reproduction; here the characters are starvation resistance and longevity versus fecundity.  相似文献   

16.
While it is commonplace for biologists to use the response to environmental manipulation as a guide to evolutionary responses to selection, the relationship between phenotypic plasticity and genetic change is not generally well-established. The life-histories of laboratory Drosophila populations are among the few experimental systems which simultaneously afford information on phenotypic plasticity and evolutionary trajectories. We employed a combination of two replicated selectively differentiated stocks (postponed aging stocks and their controls; 10 populations in total) and two different environmental manipulations (nutrition and mating) to explore the empirical relationship between phenotypic plasticity and evolutionary trajectories. While there are a number of parallels between the results obtained using these two approaches, there are important differences. In particular, as the detail of the biological characterization of either type of response increases, so their disparities multiply. Nonetheless, the combination of environmental manipulation with evolutionary divergence provides valuable information about the biological connections between life-history, caloric reserves, and reproductive physiology in Drososphila.  相似文献   

17.
We hypothesize that forms of antagonistic coevolution have forged strong links between positive selection at the molecular level and increased cancer risk. By this hypothesis, evolutionary conflict between males and females, mothers and foetuses, hosts and parasites, and other parties with divergent fitness interests has led to rapid evolution of genetic systems involved in control over fertilization and cellular resources. The genes involved in such systems promote cancer risk as a secondary effect of their roles in antagonistic coevolution, which generates evolutionary disequilibrium and maladaptation. Evidence from two sources: (1) studies on specific genes, including SPANX cancer/testis antigen genes, several Y-linked genes, the pem homebox gene, centromeric histone genes, the breast cancer gene BRCA1, the angiogenesis gene ANG, cadherin genes, cytochrome P450 genes, and viral oncogenes; and (2) large-scale database studies of selection on different functional categories of genes, supports our hypothesis. These results have important implications for understanding the evolutionary underpinnings of cancer and the dynamics of antagonistically-coevolving molecular systems.  相似文献   

18.
Betrán E  Long M 《Genetics》2003,164(3):977-988
A direct approach to investigating new gene origination is to examine recently evolved genes. We report a new gene in the Drosophila melanogaster subgroup, Drosophila nuclear transport factor-2-related (Dntf-2r). Its sequence features and phylogenetic distribution indicate that Dntf-2r is a retroposed functional gene and originated in the common ancestor of D. melanogaster, D. simulans, D. sechellia, and D. mauritiana, within the past 3-12 million years (MY). Dntf-2r evolved more rapidly than the parental gene, under positive Darwinian selection as revealed by the McDonald-Kreitman test and other evolutionary analyses. Comparative expression analysis shows that Dntf-2r is male specific whereas the parental gene, Dntf-2, is widely expressed in D. melanogaster. In agreement with its new expression pattern, the Dntf-2r putative promoter sequence is similar to the late testis promoter of beta2-tubulin. We discuss the possibility that the action of positive selection in Dntf-2r is related to its putative male-specific functions.  相似文献   

19.
20.
Studies on selection for faster development in Drosophila have typically focused on the trade-offs among development time, adult weight, and adult life span. Relatively less attention has been paid to the evolution of preadult life stages and behaviors in response to such selection. We have earlier reported that four laboratory populations of D. melanogaster selected for faster development and early reproduction, relative to control populations, showed considerably reduced preadult development time and survivorship, dry weight at eclosion, and larval growth rates. Here we study the larval phase of these populations in greater detail. We show here that the reduction in development time after about 50 generations of selection is due to reduced duration of the first and third larval instars and the pupal stage, whereas the duration of the second larval instar has not changed. About 90% of the preadult mortality in the selected populations is due to larval mortality. The third instar larvae, pupae, and freshly eclosed adults of the selected populations weigh significantly less than controls, and this difference appears during the third larval instar. Thereafter, percentage weight loss during the pupal stage does not differ between selected and control populations. The minimum amount of time a larva must feed to subsequently complete development is lower in the selected populations, which also exhibit a syndrome of reduced energy expenditure through reduction in larval feeding rate, larval digging and foraging activity, and pupation height. Comparison of these results with those observed earlier in populations selected for adaptation to larval crowding and faster development under a different protocol from ours reveal differences in the evolved traits that suggest that the responses to selection for faster development are greatly affected by the larval density at which selection acts and on details of the selection pressures acting on the timing of reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号