首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Better understanding of crop responses to projected changes in climate is an important requirement. An experiment was conducted in sunlit, controlled environment chambers known as soil–plant–atmosphere–research units to determine the interactive effects of atmospheric carbon dioxide concentration [CO2] and ultraviolet‐B (UV‐B) radiation on cotton (Gossypium hirsutum L.) growth, development and leaf photosynthetic characteristics. Six treatments were used, comprising two levels of [CO2] (360 and 720 µmol mol?1) and three levels of 0 (control), 7.7 and 15.1 kJ m?2 d?1 biologically effective UV‐B radiations within each CO2 level. Treatments were imposed for 66 d from emergence until 3 weeks after the first flower stage. Plants grown in elevated [CO2] had greater leaf area and higher leaf photosynthesis, non‐structural carbohydrates, and total biomass than plants in ambient [CO2]. Neither dry matter partitioning among plant organs nor pigment concentrations was affected by elevated [CO2]. On the other hand, high UV‐B (15.1 kJ m?2 d?1) radiation treatment altered growth resulting in shorter stem and branch lengths and smaller leaf area. Shorter plants at high UV‐B radiation were related to internode lengths rather than the number of mainstem nodes. Fruit dry matter accumulation was most sensitive to UV‐B radiation due to fruit abscission. Even under 7.7 kJ m?2 d?1 of UV‐B radiation, fruit dry weight was significantly lower than the control although total biomass and leaf photosynthesis did not differ from the control. The UV‐B radiation of 15.1 kJ m?2 d?1 reduced both total (43%) and fruit (88%) dry weights due to smaller leaf area and lower leaf net photosynthesis. Elevated [CO2] did not ameliorate the adverse effects of UV‐B radiation on cotton growth and physiology, particularly the boll retention under UV‐B stress.  相似文献   

2.
3.
两个品种转基因抗虫棉光合生理的CO2响应   总被引:1,自引:0,他引:1  
栽培环境条件的改变会对转基因作物产生深远影响。以2种不同转基因棉花及其亲本对照为材料,研究了盆栽种植条件下不同棉花品种在蕾期和吐絮期光合生理特性CO2响应特征。结果表明,与各自的常规棉对照比较,两种转基因抗虫棉单叶净光合速率CO2响应的特征参数表观初始羧化效率(CE)、表观暗呼吸速率(Rd)和最大净光合速率(Pmax,c)虽有一定程度的变化,但其差异均未达到显著水平。在高CO2浓度范围内(700μmol.mol-1),转基因抗虫棉单叶净光合速率和水分利用率(WUE)的CO2响应曲线特征发生变化,且与品种及生育时期有关。两种转基因抗虫棉在不同生育时期的气孔导度(Gs)对CO2浓度的响应特征与其常规棉对照相似,短期CO2浓度增高对转基因抗虫棉的气孔导度没有显著性影响。  相似文献   

4.
Summary A simple and efficient method for multiple shoot induction and proliferation was achieved in six Indian cotton cultivars from the pre-existing meristems of 21-d-old in vitro-grown seedlings. Combinations of naphthalene acetic acid (0.3–10.7 μM) and 6-benzylaminopurine (BA; 2.2 or 4.4 μM) were used for induction of shoots. The shoots proliferated and were maintained on MS (Murashige and Skoog) medium supplemented with 4.4 μM BA. Simultaneous elongation of shoots was obtained in the same medium. Optimum multiplication was observed in cv. LRK-516 (19.7±4.6), in cotyledonary nodes isolated from the adjoining node and cultured individually in 250 ml flasks. This indicates lateral inhibition of adjoining meristems. A positive influence of culture flasks as opposed to test tubes on the proliferation of multiple shoots was observed in all six cultivars tested. The morphogenic response varied with genotype and the nature of explants. Rooting of elongated shoots was achieved on MS medium devoid of growth regulators. The plantlets were transferred to the field after hardening in the greenhouse. All plants flowered and formed bolls on maturity.  相似文献   

5.
Adams  Pamela D.  Kloepper  Joseph W. 《Plant and Soil》2002,240(1):181-189
The purpose of this study was to determine if populations of indigenous bacterial endophytes in seed, stem and root tissue of cotton seedlings are influenced by host genotype. Growth chamber and field experiments were conducted to test the hypothesis that host genotype has an effect on endophytic bacterial populations in seed tissues and the developing cotton seedling. Initially, population densities of bacteria within seed of nine cotton cultivars were very low (i.e., 10 2.0 colony forming units seed–1). However, after 4 days growth on water agar, population densities within developing radicles increased significantly (log10 2–5 colony forming units) and significant cultivar differences were found. Significant cultivar differences occurred for populations of endophytic bacteria and the composition of bacterial functional groups differed among cultivars in field-grown seedlings at 5, 8, and 15 days after planting. Differences in the ranking of cultivars occurred for endophytic populations recovered from seed and aseptically and field-grown radicle and seedling tissues. These results suggest that whether originating from seed or from soil, cotton plants are capable of immediately establishing a carrying capacity for communities of endophytic bacteria following seed germination. During germination and development of the seedling, there are genetic and possible morphological/physiological effects that contribute to significant differences in colonization of bacterial endophytes among cotton cultivars.  相似文献   

6.
Cotton (Gossypium hirsutum L.) crop, cultivated between 40 degrees N and 40 degrees S, is currently experiencing 2-11 kJ m-2 d-1 of UV-B radiation. This is predicted to increase in the near future. An experiment was conducted to study the effect of enhanced UV-B radiation on vegetative and reproductive morphology and leaf anatomy of cotton in sunlit, controlled environment chambers. From emergence to harvest, cotton plants were exposed to 0, 8 or 16 kJ m-2 d-1 of UV-B in a square wave approach for 8 h from 0800 to 1600 h. Changes in plant height, internode and branch length, mainstem node number, leaf area, length and area of petals and bracts, and anther number per flower were recorded. Epidermal cell and stomatal density, stomatal index, leaf thickness, and epidermal, palisade and mesophyll tissue thickness were also measured. Initial chlorotic symptoms on leaves turned into necrotic patches on continued exposure to enhanced UV-B. Exposure to high UV-B reduced both vegetative and reproductive parameters and resulted in a smaller canopy indicating sensitivity of cotton to UV-B radiation. Enhanced UV-B radiation increased epicuticular wax content on adaxial leaf surfaces, and stomatal index on both adaxial and abaxial leaf surfaces. Leaf thickness was reduced following exposure to UV-B owing to a decrease in thickness of both the palisade and mesophyll tissue, while the epidermal thickness remained unchanged. The vegetative parameters studied were affected only by high levels of UV-B (16 kJ m-2 d-1), whereas the reproductive parameters were reduced at both ambient (8 kJ m-2 d-1) and high UV-B levels. The study shows that cotton plants are sensitive to UV-B at both the whole plant and anatomical level.  相似文献   

7.
8.
Flowering in cotton (Gossypium hirsutum L.) is a sensitive stage to water-deficit stress, but the effects on metabolism are not well understood. The objective of this study was to monitor gas exchange responses of cotton plants under conditions of limited water supply and evaluate the effects on the carbohydrate concentrations and glutathione reductase levels in the cotton flower. Growth chamber experiments were conducted in 2008 and 2009, with normal day/night conditions of 32/24 °C and optimum quantities of Hoagland's nutrient solution applied until flowering. Treatments were imposed at flowering and consisted of control (Control), where optimum quantities of water were applied, and water stress (WS) where 50% of optimum quantity of water was supplied. Water-deficit stress resulted in a significant decrease in leaf stomatal conductance. Leaf photosynthetic and respiration rates were similarly decreased compared to the control. Ovary and style water potential of water-stressed leaves were significantly higher compared to the water potential of water stressed leaves, indicating that cotton flowers are fairly resistant to changes in the water status of the plant. However, carbohydrate concentrations of water-stressed pistils (ovary and style) were significantly increased compared to the control and a similar pattern was observed in the levels of glutathione reductase of water-stressed pistils. In conclusion, water-deficit stress during flowering resulted in significant decreases in leaf gas exchange functions as well as leaf water potential. Cotton pistils appeared to be less sensitive since they were able to maintain water potential similar to the control under limited water supply and increase glutathione reductase levels. However, pistil carbohydrate metabolism was significantly affected resulting in accumulation of both hexose and sucrose indicating a perturbation in sucrose cleaving and hexose utilizing enzymes that could potentially have as a consequence a decrease in fertilization and seed set efficiency.  相似文献   

9.
Cotton is an important cash crop and a means of survival for Zimbabwe’s smallholder farmers who are located in the semi-arid areas. However, it is plagued by a wide variety of pests. The cotton industry in Zimbabwe came up with sustainable pest management strategies which include within the season rotation of bollworm pesticides, a closed season and acaricide rotation scheme. The land reform programme brought new players in the cotton industry and it was critical to determine their knowledge on the pest management strategies. A survey was conducted to determine farmer knowledge, practice and perception on the resistance management strategy. Responses indicated that both communal and new farmers based their spray on egg counts. Communal farmers knew when to use pyrethroids compared to new farmers. Farmers observed the acaricide rotation scheme although they use some non acaricide pesticides. More than half of the new farmers could not say which acaricides were in the acaricide scheme. The majority of the farmers reported that they adhered to the closed season although field observation revealed otherwise. A significantly higher number of new farmers knew when to slash cotton compared to communal farmers. Knowledge of acaricides was not common among farmers. Use of pyrethroids was not limited to 1 February onwards as stipulated in the cotton pest resistance management strategy. The results suggest the need for training among the cotton farmers especially the new farmers or refresher courses among the communal farmers.  相似文献   

10.
To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.  相似文献   

11.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

12.
1. Four Lotus corniculatus genotypes differing in cyanoglycoside and condensed tannin concentrations were grown in either low (350 ppm) or high (700 ppm) atmospheric CO2 environments. Larval performance, consumption and conversion efficiency of Polyommatus icarus feeding on this plant material were measured.
2. Plants grown under elevated CO2 contained less cyanoglycosides, more condensed tannins and more starch than control plants. However, water concentration, nitrogen and protein as well as nitrogen concentration in relation to carbon concentration did not differ between CO2 treatments.
3. The four genotypes differed significantly in condensed tannins, cyanoglucoside, leaf water and leaf nitrogen but no genotype–CO2 interaction was detected, except for total phenolics and condensed tannins in which two plant genotypes showed stronger increases under elevated CO2 than the other two.
4. Larvae of P . icarus consumed more plant material and used and converted it more efficiently from plants grown at high atmospheric CO2.
5. Larvae developed significantly faster and were significantly heavier when fed plant material grown under elevated CO2. The observed difference in mass disappeared in the pupal and adult stages. However, lipid concentration of adults from the elevated CO2 treatment was marginally significantly higher than of controls.
6. It is concluded that the higher carbohydrate concentration of L . corniculatus plants grown at elevated CO2 renders leaves more suitable and better digestible to P . icarus . Furthermore, differences in allelochemicals might influence the palatability of L . corniculatus leaves for this specialist on Fabaceae.  相似文献   

13.
This experiment was conducted to study the effect of high ozone concentrations on two cotton (Gossypium hirsutum L.) cultivars. Two cotton cultivars (Romanos and Allegria) were exposed to control (CF < 4 ppb O3) and 100 ppb O3. Plant exposure to ozone began eight days after emergence and was interrupted one day before removing the leaves, to calculate the leaf area. Plants were exposed to ozone 7 h/day, in closed and controlled-environment chambers, during their illumination with artificial visible light.In comparison to control plants, plants exposed to O3 showed chlorotic and necrotic patches on their leaves, increased stomatal or epidermal cell density and yellowness of cotton fibers. Elevated ozone concentration did not have a significant effect on stomatal width, total leaf thickness and thickness of histological components of leaves. Exposure to ozone concentration reduced non-glandular hair density of main leaf veins, plant height, mainstem internode length, chlorophyll content, net photosynthetic rate, stomatal conductance and length and area of bracts and petals. Elevated ozone treatment reduced the maximum length of staminal tube, anther number, pollen grain germination, leaf area, leaf dry weight, boll number, raw cotton weight, total branch length, dry weight of the mainstem–branches–bracts–carpophylls and of root dry weight. Furthermore, exposure to O3 reduced the seed weight, the lint weight, the yield, the ratio of lint weight to seed weight, the fiber strength, the micronaire, the maturity index and the fiber uniformity index values. This study shows that the exposure to high ozone concentrations mainly affected the rate of photosynthesis, raw cotton weight and strength of cotton fibers.  相似文献   

14.
15.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

16.
A new sprout decay and seedling stunting disease of unknown aetiology in upland cotton (Gossypium hirsutum L.) affecting nearly 5%–10% of young seedlings was noticed in vertisols of central Vidarbha (Maharashtra state, India) in July of 2017. The bacterium was consistently isolated from diseased seedlings and identified with a polyphasic method of characterization, including morphological, physiological, biochemical and 16S rRNA gene sequence analysis. The bacterium strain CICR-MGMG1 was isolated from diseased plants identified as Enterobacter sp. Inoculation of healthy cotton seed with an axenic culture of strain CICR-MGMG1 isolated from diseased young seedling reproduced disease symptoms of yellowing, stunting and deformed growth similar to the symptoms reported from infected field condition. The strain CICR-MGMG1 was consistently isolated from both diseased seedlings and stunted plants. Thus, the pathogenicity test of Koch's postulates was confirmed with the bacterium Enterobacter sp. strain CICR-MGMG1 as the causal organism of sprout decay and seedling stunting. To the best of our knowledge, this is the first record of Enterobacter sp. causing sprouts decay and seedling stunting of cotton.  相似文献   

17.
Summary Cotton seedlings were germinated in either tap water or a CaSO4 solution and then grown for two days in nutrient solutions containing 0.1, 1.0, or 10.0 me Ca/1. They were then transferred to cultures having the same Ca variables and the roots subjected to temperatures of 26, 18, 15 and 12°C for four days. The fresh weight of all plant parts and leaf area increased with increasing root temperatures and with increasing Ca levels, the effect of Ca being most pronounced at the higher temperatures. The dry weight was increased by increasing root temperature; the effect of Ca was rather small. Water use increased with increasing temperature and was higher for the lowest Ca level than for the higher levels. The results emphasize the overriding effect of low temperature on water uptake. Calcium had little effect on the growth depression resulting from low root temperatures. Joint contribution from the Agronomy Department, Mississippi Agricultural Experiment Station, State College and the Soil Science Department, North Carolina Agricultural Experiment Station, Raleigh. Published with the approval of the Directors of Research as Journal Contribution No.1530 and Paper No.2389 of the Journal Series, respectively. This is a report of research conducted while the author was on sabbatical leave at North Carolina State University, February 1–September 10, 1965.  相似文献   

18.
Atmospheric change may affect plant phenolic compounds, which play an important part in plant survival. Therefore, we studied the impacts of CO2 and O3 on the accumulation of 27 phenolic compounds in the short‐shoot leaves of two European silver birch (Betula pendula Roth) clones (clones 4 and 80). Seven‐year‐old soil‐grown trees were exposed in open‐top chambers over three growing seasons to ambient and twice ambient CO2 and O3 concentrations singly and in combination in central Finland. Elevated CO2 increased the concentration of the phenolic acids (+25%), myricetin glycosides (+18%), catechin derivatives (+13%) and soluble condensed tannins (+19%) by increasing their accumulation in the leaves of the silver birch trees, but decreased the flavone aglycons (?7%) by growth dilution. Elevated O3 increased the concentration of 3,4′‐dihydroxypropiophenone 3‐β‐d ‐glucoside (+22%), chlorogenic acid (+19%) and flavone aglycons (+4%) by inducing their accumulation possibly as a response to increased oxidative stress in the leaf cells. Nevertheless, this induction of antioxidant phenolic compounds did not seem to protect the birch leaves from detrimental O3 effects on leaf weight and area, but may have even exacerbated them. On the other hand, elevated CO2 did seem to protect the leaves from elevated O3 because all the O3‐derived effects on the leaf phenolics and traits were prevented by elevated CO2. The effects of the chamber and elevated CO2 on some compounds changed over time in response to the changes in the leaf traits, which implies that the trees were acclimatizing to the altered environmental conditions. Although the two clones used possessed different composition and concentrations of phenolic compounds, which could be related to their different latitudinal origin and physiological characteristics, they responded similarly to the treatments. However, in some cases the variation in phenolic concentrations caused by genotype or chamber environment was much larger than the changes caused by either elevated CO2 or O3.  相似文献   

19.
The effects of aeration of the N-free rooting medium with elevated CO2 on (a) acetylene reduction by perlite-grown plants and (b) N2-fixation and long-term growth of nutrient solution-grown plants were determined for nodulatedAlnus glutinosa (L.) Gaertn. In the former experiments, roots of intact plants were incubated in acetylene in air in darkened glass jars for 3 hr, followed by a further 3 hr incubation period in air enriched with CO2 (0–5%). During incubation, the CO2 content of the jars increased by 0.17% per hour due to respiration of the root system, so that the CO2 content at 3 hr was 0.5%. Additional enrichment of the rooting medium gas-phase with CO2 equivalent to 1.1% and 1.75% CO2 of the gas volume significantly increased nitrogenase activity (ethylene production) by 55% and 50% respectively, while enrichment with greater than 2.5% CO2 decreased activity. In contrast, ethylene production by control plants, where CO2 was not added to the assay jars, decreased by 8% over the assay period. In long-term growth experiments, nodulated roots of intactAlnus glutinosa plants were sealed into jars containing N-free nutrient solution (pH 6.3) and aerated with air, or air containing elevated levels of CO2 (1.5% and 5%). Comparison of the appearance of CO2-treated with air treated plants suggested that 1.5% CO2 stimulated plant growth. However, at harvest after 5 or 6 weeks variability between plants masked the significance of differences in plant dry weight. A significant increase of 33% in total nitrogen of plants aerated with 1.5% CO2, compared with air-treated plants, was demonstrated, broadly in line with the short-term increase in acetylene reducing activity observed following incubations with similar CO2 concentrations. Shoot dry weight was not affected significantly by long-term exposure to 5% CO2, the main effect on growth being a 20% reduction in dry weight of the root system, possibly through inhibition of root system respiration. However, in contrast to the inhibitory effects of high CO2 on acetylene reduction there was no significant effect on the amounts of N2 fixed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号