首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In extracts from Zea mays shoots, the presence of thiol compoundsin the extraction buffer was necessary to get an active 3 deoxy-D-arabinoheptulosonic acid 7-phosphate (DAHP) synthase. Its pH optimumfor activity was about 7.5. Of the different cations tested,only Mn++ was an activator. Enzyme stability was optimal inTris-HCl buffer, pH 7.5, that contained a reducing agent, Mn++and a polyol. Contrary to other reports, phosphoenolpyruvate(PEP) did not stabilize the preparation significantly. The synthaseexhibited high affinities for both erythrose-4-phosphate (Km:0.24 mM) and PEP (Km: 0.31 mM). Its specific activity was highestin young shoots. Corn DAHP synthase was inhibited in vitro by tryptophan. Moreover,the enzyme was retarded on a tryptophan agarose affinity column,but it was removed with the bulk of protein from the same supportwhen eluted with buffer containing tryptophan. Inhibition whichwas easily lost during storage at 4°C was pH dependent andincreased during development. Maximal inhibition, about 60%with 1 mM tryptophan, was observed in extracts from 8 day-oldshoots. Phenylalanine and tyrosine were not inhibitory, andno synergistic effects were observed when the aromatic aminoacids were tested in combination. Isoenzymes could not be demonstrated. (Received April 23, 1980; )  相似文献   

2.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDOP) synthase and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyze similar phosphoenolpyruvate-utilizing reactions. The genome of Neisseria gonorrhoeae contains one gene encoding KDOP synthase and one gene encoding DAHP synthase. Of the two nonhomologous DAHP synthase families known, the N. gonorrhoeae protein belongs to the family I assemblage. KDOP synthase exhibited an ability to replace arabinose-5-P with either erythrose-4-P or ribose-5-P as alternative substrates. The results of periodate oxidation studies suggested that the product formed by KDOP synthase with erythrose-4-P as the substrate was 3-deoxy-d-ribo-heptulosonate 7-P, an isomer of DAHP. As expected, this product was not utilized as a substrate by dehydroquinate synthase. The significance of the ability of KDOP synthase to substitute erythrose-4-P for arabinose-5-P is (i) recognition of the possibility that the KDOP synthase might otherwise be mistaken for a species of DAHP synthase and (ii) the possibility that the broad-specificity type of KDOP synthase might be a relatively vulnerable target for antimicrobial agents which mimic the normal substrates. An analysis of sequences in the database indicates that the family I group of DAHP synthase has a previously unrecognized membership which includes the KDOP synthases. The KDOP synthases fall into a subfamily grouping which includes a small group of DAHP synthases. Thus, family I DAHP synthases separate into two subfamilies, one of which includes the KDOP synthases. The two subfamilies appear to have diverged prior to the acquisition of allosteric-control mechanisms for DAHP synthases. These allosteric control specificities are highly diverse and correlate with the presence of N-terminal extensions which lack homology with one another.3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) and 3-deoxy-d-manno-octulosonate 8-phosphate (KDOP) are analogous seven- and eight-carbon 2-keto-3-deoxy sugars that are synthesized by enzymes which belong to functionally unrelated pathways. DAHP synthase forms DAHP as the acyclic precursor of the aromatic amino acids in bacteria, lower eukaryotes, and plants (3); KDOP synthase is best known for its role in the formation of KDOP as a critical component of the lipopolysaccharide of gram-negative bacteria (37), but its distribution in nature has recently been recognized to be broader (13). Both enzymes catalyze an overall condensation of phosphoenolpyruvate (PEP) with an aldose, i.e., erythrose-4-phosphate (E4P) in the case of DAHP synthase and arabinose-5-phosphate (A5P) in the case of KDOP synthase. The reactions are irreversible and are not aldol-type condensations, which unfortunately has been implied by the Enzyme Commission naming that has been recommended for DAHP synthase.As might be expected from the close structural relationship of A5P and E4P, the reactions are strikingly similar. This similarity is reflected at the level of mechanistic detail (see reference 16 and references therein). DAHP synthase and KDOP synthase, along with enolpyruvoylshikimate 3-phosphate synthase and UDP-N-acetylglucosamine enolpyruvoyl transferase, comprise a small class of PEP-utilizing enzymes that catalyze C—O bond cleavage with respect to the release of Pi from PEP (1, 27). This contrasts with the more familiar nucleophilic attack at the phosphorous atom of PEP that results in P—O bond cleavage by the action of enzymes such as pyruvate kinase (25), PEP carboxylase (34), and PEP carboxykinase (8).In classical studies with Escherichia coli, DAHP synthase (44, 45) and KDOP synthase (41) are specific for E4P and A5P, respectively. In contrast, we found that the KDOP synthase of Neisseria gonorrhoeae possessed the ability to utilize E4P in place of A5P. We addressed the question of whether KDOP synthase of N. gonorrhoeae in the presence of E4P and PEP was able to form DAHP, in which case it would also have the potential to function as a DAHP synthase. The time-dependent cleavage of the product was investigated by the periodate-oxidation-thiobarbituric acid (TBA) assay, and these results allow some speculation on the stereospecific course of the reaction in comparison with the reaction of DAHP synthase.  相似文献   

3.
Enzymological basis for herbicidal action of glyphosate   总被引:8,自引:8,他引:0       下载免费PDF全文
The effects of 1 millimolar glyphosate (N-[phosphonomethyl]glycine) upon the activities of enzymes of aromatic amino acid biosynthesis, partially purified by ion-exchange chromatography from mung bean seedings (Vigna radiata [L.] Wilczek), were examined. Multiple isozyme species of shikimate dehydrogenase, chorismate mutase, and aromatic aminotransferase were separated, and these were all insensitive to inhibition by glyphosate. The activities of prephenate dehydrogenase and arogenate dehydrogenase were also not sensitive to inhibition. Two molecular species of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase were resolved, one stimulated several-fold by Mn2+ (DAHP synthase-Mn), and the other absolutely dependent upon the presence of Co2+ for activity (DAHP synthase-Co). Whereas DAHP synthase-Mn was invulnerable to glyphosate, greater than 95% inhibition of DAHP synthase-Co was found in the presence of glyphosate. Since Co2+ is a Vmax activator with respect to both substrates, glyphosate cannot act simply by Co2+ chelation because inhibition is competitive with respect to erythrose-4-phosphate. The accumulation of shikimate found in glyphosate-treated seedlings is consistent with in vivo inhibition of both 5-enolpyruvylshikimic acid 3-phosphate synthase and one of the two DAHP synthase isozymes. Aromatic amino acids, singly or in combination, only showed a trend towards reversal of growth inhibition in 7-day seedlings of mung bean. The possibilities are raised that glyphosate may act at multiple enzyme targets in a given organism or that different plants may vary in the identity of the prime enzyme target.  相似文献   

4.
Several plant tissues were assayed for DAHP synthase activity.The activity was found in most of the plants examined, and thehighest activity was detected in developing mung bean plants.During the growth of mung bean shoots, the highest level ofthe activity on protein basis was seen 6 to 8 days after sowing. Some properties of DAHP synthase were investigated using theenzyme preparation mainly from mung bean shoots. The productof the reaction was identified as DAHP by paper chromatographyof the reaction mixture and by the absorption spectrum of thederivative formed by periodate-TBA treatment. Mg++ at 1–5mM concentration increased the rate of DAHP formation threeto four times, although the enzyme was still active in the absenceof Mg++. Optimal pH was found to be between pH 7.2 and 7.9.Relationship between the rate of DAHP formation and concomitantacid phosphate activity in enzyme preparations was discussed. (Received July 20, 1967; )  相似文献   

5.
6.
Levels of shikimic acid in the roots and rhizomes of Iris pseudacorusgrowing under natural conditions were measured at monthly intervalsfor a period of one year. Seasonal fluctuations in the shikimatecontent suggest that the high levels during winter floodingand lower levels during the summer period of low water tableare related to a particular flood-tolerance metabolism in theroots and rhizomes. The suggested pathway, involving the condensationof phosphoenolpyruvate and crythrose 4-phosphato (both formedduring anaerobic carbohydrate breakdown) to 3-deoxy-D-arabino-heptulosouicacid 7-phosphate and the subsequent synthesis of shikimie acid,appears to function as a physiological adaptation to floodingin rhizomatous species such as I. pseuducorus. Other pathwaysof anaerobic respiration in waterlogged roots are discussedin relation to the proposed scheme in Iris.  相似文献   

7.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases catalyse the first step of the shikimate pathway. Two unrelated DAHP synthase types have been described in plants and bacteria. Two type II (aroA(A2) and aroA(A5)) and one type I DAHP synthase gene (aroA001) were identified from the myxobacterium Stigmatella aurantiaca Sg a15. Inactivation of aroA(A5) leads to a mutant that is impaired in the biosynthesis of aurachins, which are electron transport inhibitors and contain an anthranilate moiety. Feeding of anthranilic acid to the mutant culture restores production of aurachins. Inactivation of aroA(A2) and aroA001 does not impair production of aurachins or other known secondary metabolites of S. aurantiaca Sg a15.  相似文献   

8.
Higher plants express 3-deoxy-D-manno-octulosonate 8-phosphate synthase   总被引:3,自引:1,他引:2  
Abstract. The enzymatic activity of 3-deoxy- D-manno -octulosonate 8-phosphate (KDOP) synthase was detected in eight diverse plant species, thus providing enzymological data consistent with recent reports of the presence of 3-deoxy- D-manno -octulosonate in plant cell walls. KDOP synthase from spinach was partially purified and characterized. It possessed weak activity as 3-deoxy- D-arabino -heptulosonate 7-phosphate (DAHP) synthase. In the presence of phosphoenolpyruvate, which conferred dramatic thermostability, KDOP synthase had a catalytic temperature optimum of about 53°C. The pH optimum was 6.2, and divalent cations were neither stimulatory nor required for activity. The Km values for arabinose 5-P and phosphoenolpyruvate were 0.27 mol m−3 and about 35 mmol m−3, respectively. The kinetics of periodate oxidation of KDOP formed by spinach KDOP synthase indicate that the same stereochemical configuration exists as with bacterial KDOP. The possibility that an unregulated species of DAHP synthase found in some bacteria might in fact be a KDOP synthase exhibiting substrate ambiguity of the type seen in higher plants was examined. However, the DAHP synthase isozyme, DS-O, from Acinetobacter calcoaceticus was found to be specific for erythrose 4-P. The KDOP synthase of Acinetobacter calcoaceticus was also found to be specific for arabinose 5-P.  相似文献   

9.
The biosynthetic route to L-tyrosine was identified in isogenic suspension-cultured cells of N. silvestris. Arogenate (NADP+) dehydrogenase, the essential enzyme responsible for the conversion of L-arogenato L-tyrosine, was readily observed in crude extracts. In contrast, prephenate dehydrogenase (EC 1.3.1.13) activity with either NAD+ or NADP+ was absent altogether. Therefore, it seems likely that this tobacco species utilizes the arogenate pathway as the exclusive metabolic route to L-tyrosine. L-Tyrosine (but not L-phenylalanine) was a very effective endproduct inhibitor of arogenate dehydrogenase. In addition, analogs of L-tyrosine (m-fluoro-DL-tyrosine [MFT], D-tyrosine and N-acetyl-DL-tyrosine), but not of L-phenylalanine (o-fluoro-DL-phenylalanine and p-fluoro-DL-phenylalanine), were able to cause inhibition of arogenate dehydrogenase. The potent antimetabolite of L-tryptophan, 6-fluoro-DL-tryptophan, had no effect upon arogenate dehydrogenase activity. Of the compounds tested, MFT was actually more effective as an inhibitor of arogenate dehydrogenase than was L-tyrosine. Since MFT was found to be a potent antimetabolite inhibitor of growth in N. silvestris and since inhibition was specifically and effectively reversed by L-tyrosine, arogenate dehydrogenase is an outstanding candidate as the in vivo target of analog action. Although chorismate mutase (EC 5.4.99.5) cannot be the prime target of MFT action, MFT can mimick L-tyrosine in partially inhibiting this enzyme activity. The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was insensitive to L-phenylalanine or L-tyrosine. The overall features of this system indicate that MFT should be a very effective analog mimick for selection of feedback-insensitive regulatory mutants L-tyrosine biosynthesis.Abbreviations DAHP synthase 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase - 6FT 6-fluoro-DL-tryptophan - MFT m-fluoro-DL-tyrosine - OFP o-fluoro-DL-phenylalanine - PFP p-fluoro-DL-phenylalanine  相似文献   

10.
The multibranched shikimic acid pathway was discovered as the biosynthetic route to the aromatic amino acids phenylalanine, tyrosine and tryptophan and a host of other secondary metabolites. An extensive body of work is available on the characterization of various enzymes of this pathway in order to understand the underlying mechanisms of aromatic amino acid biosynthesis and secondary metabolism in higher plants. In the present investigation, selective assays, based on feedback regulation patterns and divalent cation requirements, were used to monitor the isozyme profiles of two of the key regulatory enzymes of this pathway. 3-Deoxy- d -arabino heptulosonate-7-phosphate synthase (DAHP synthase/DS) (EC 4.1.2.15) and chorismate mutase (CM) (EC 5.4.99.4) have been characterized from different vegetative and reproductive organs of Brassica juncea cv. Pusa Bold. An attempt has also been made to investigate the effect of external factors, such as light and wounding on the regulation of these enzymes. The results reveal differential expression of DAHP synthase and CM in various organs of Brassica and an adaptability of plants to various stresses by up or down regulation of these enzymes.  相似文献   

11.
The effect of N-2-(6-methyl-pyridyl)-aminomethylene bisphosphonic acid (M-pyr-AMBPA), a compound previously shown to exhibit herbicidal properties on whole plants and to inhibit in vitro activity of the first enzyme in the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase, was investigated on Nicotiana plumbaginifolia suspension cultured cells and compared to that of the herbicide glyphosate. The addition of M-pyr-AMBPA from 10−4 to 10−3 M was found to cause a severe cell growth reduction. Kinetic analysis of partially purified DAHP synthase accounted for non-competitive inhibition type with respect to both phospho-enol-pyruvate and erythrose-4-phosphate, with KI values of 0.43 and 0.62 mM, respectively. Amino acid pool measurements of cells grown in the presence of sublethal doses of M-pyr-AMBPA pointed to an actual reduction of free aromatic amino acids, showing that DAHP synthase inhibition takes place in vivo, and suggesting that the interference of this aminophosphonate with plant aromatic biosynthesis may account for a large part of its phytotoxicity. However, exogenous supply of a mixture of phenylalanine, tyrosine and tryptophan failed to achieve full reversal of cell growth inhibition, yet the occurrence of other target(s) cannot be ruled out. Received November 24, 1998; accepted June 3, 1999  相似文献   

12.
Dehydroquinate synthase from Phaseolus mungo seedlings was purified120-fold by DE-23, hydroxylapatite and Sephadex G-100 columnchromatography. The final preparation was free of dehydroquinatehydro-lyase and NAD(P)H2 oxidase. The dehydroquinate synthaserequired Co2+ and NAD as cofactors. Co2+ could be replaced byCu2+ at 0.1 mM, but Cu2+ at higher levels was inhibitory. Noneof the other metal ions tested activated the enzyme. Some activitywas observed in the absence of added Co2+ and this activitywas inhibited by EDTA but not by diethyldithiocarbamate, NaN3or NaCN. Heavy metal ions, such as Ag+ and Hg2+, and p-chloromercuribenzoatestrongly inhibited the enzyme activity. Of the pyridine nucleotidestested only NAD was required for the maximum activity of theenzyme. In the absence of NAD, the enzyme retained 30 to 40%of the activity obtained with added NAD. The apparent Km valuefor DAHP at pH 7.4 was about 23 µM. The enzyme activityappeared to be maximum at about pH 8.5. However, the characteristicsof the enzyme were studied at pH 7.4, because of the labilityof the enzyme under alkaline conditions. An Arrhenius plot ofthe enzyme reaction showed a break at about 21?C, and belowthis critical temperature the activation energy increased. (Received March 4, 1977; )  相似文献   

13.
14.
Phenotypically normal and fertile transgenic Brassica napuscv. Westar plants were obtained following co-cultivation ofstem epidermal explants with an Agrobacterium tumefaciens straincontaining a disarmed octopine tumour-inducing plasmid pTiB6S3-SE.The A. tumefaciens cells also contained pMON316, a cointegratevector carrying genes for kanamycin resistance and a scorablemarker nopaline synthase. Transformants were selected by theirability to grow in the presence of 100 µg cm-3 kanamycin.Transformation was confirmed by the activities of neomycin phosphotransferaseII and nopaline synthase enzymes and by Southern blots. Thekanamycin resistance trait was transferred to the progeny ofthe self-fertilized plants. Key words: Transformation, octopine Ti-plasmid, oilseed rape  相似文献   

15.
The quantum yields of photosynthetic O2 evolution were measuredin 15 species of C4 plants belonging to three different decarboxylationtypes (NADP-ME type, NAD-ME type and PEP-CK type) and 5 speciesof C3 plants and evaluated relative to the maximum theoreticalvalue of 0.125 mol oxygen quanta-1. At 25°C and 1% CO2,the quantum yield in C4 plants averaged 0.079 (differences betweensubgroups not significant) which was significantly lower thanthe quantum yield in C3 plants (average of 0.105 for 5 species).This lower quantum yield in C4 plants is thought to reflectthe requirement of energy in the C4 cycle. For the C4 NADP-MEtype plant Z. mays and NAD-ME type plant P. miliaceum, quantumyields were also measured over a range of CO2 levels between1 and 20%. In both species maximum quantum yields were obtainedunder 10% CO2 (0.105 O2 quanta-1 in Z. mays and 0.097 O2 quanta-1in P. miliaceum) indicating that at this CO2 concentration thequantum yields are similar to those obtained in C3 plants underCO2 saturation. The high quantum yield values in C4 plants undervery high CO2 may be accomplished by direct diffusion of atmosphericCO2 to bundle sheath cells, its fixation in the C3 pathway,and feedback inhibition of the C4 cycle by inorganic carbon. (Received June 6, 1995; Accepted August 15, 1995)  相似文献   

16.
17.
The evolution of aromatic amino acid biosynthesis and its regulation is under study in a large assemblage of prokaryotes (Superfamily A) whose phylogenetic arrangement has been constructed on the criterion of oligonucleotide cataloging. One section of this Superfamily consists of a well defined (rRNA homology) cluster denoted as Group III pseudomonads. Pseudomonas acidovorans ATCC 11299a, a Group III member, was chosen for indepth studies of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the initial regulatory enzyme of aromatic biosynthesis. This strain is of particular interest for evolutionary studies of aromatic metabolism because it possesses phenylalanine hydroxylase, an enzyme whose physiological role and distribution among prokaryotes is largely unknown. Although P. acidovorans ATCC 11299a has been of uncertain identity, we now establish it unambiguously as a species of acidovorans by virtue of its 87% DNA homology with P. acidovorans ATCC 15668 (type strain). This result conformed with enzyme patterning studies which placed ATCC 11299a into pseudomonad Group IIIa, a subgroup containing the acidovorans species. Crude extracts of Group III pseudomonads had previously been shown to share, as a common group characteristic, sensitivity of DAHP synthase to feedback inhibition by either l-tyrosine or l-phenylalanine. Detailed studies with partially purified preparations from strain ATCC 11299a revealed the presence of two distinct regulatory isozymes, DAHP synthase-phe and DAHP synthase-tyr. DAHP synthase-tyr is tightly controlled by l-tyrosine with 50% inhibition of activity being achieved at 4.0 M effector. DAHP synthase-phe is inhibited 50% by 40 M l-phenylalanine and exhibits dramatic changes in levels of activity, as well as chromatographic elution patterns, in response to dithiothreitol. This two-isozyme pattern of DAHP synthase has not been described previously, although it may prove to be widespread.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - E4P d-erythrose-4-phosphate - PEP phosphoenolpyruvate - DTT dithiothreitol - BSA fraction V bovine serum albumin  相似文献   

18.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

19.
The time course of 14C incorporation into shikimic (SA) andquinic acids (QA) was examined in Quercus pedunculata seedlingsof different age fed with 14C glucose-6-phosphate (G6P) or 14Cdehydroquinic acid (DHQ). QA was actively synthesized from G6Pand exhibited the highest radioactivity among the organic acids.In contrast, DHQ, a good precursor of shikimate, was poor forquinate synthesis. In both cases, QA and SA presented parallelchanges in specific radioactivities with time. The experimental results suggest that in oak leaves QA is formedby a route that is independent of the shikimate pathway andthat this compound undergoes an important turnover. Moreover,depending on the physiological state of the plants, there aredifferences in the relative biosynthetic rates of the two acids. (Received April 23, 1980; )  相似文献   

20.
14CO2 assimilation was studied with diploid, tetraploid, hexaploidspecies of the genera Triticum and their wild relatives Aegilops.Attached mature leaves of 3–4 weekold plants were allowedto undergo photosynthesis under air at ambient temperature.The pattern of distribution of 14C was notably similar in Triticumand Aegilops species whatever the level of ploidy. Sucrose wasthe sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolatepathway by glycolate, the product of the photorespiration orby the Calvin cycle intermediates exported into the cytoplasm.Depending on the species, the glycolate pathway provided 40to 75%of the sucrose 14C. The higher labeling of sucrose was associated with the greaterparticipation of the glycolate pathway in the wild diploid (DD)A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum.The results suggest that the expression of the male D genomeis dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature)or hindering (1% O2 ) photorespiration, sucrose labeling decreased,but serine and glycine labeling was favoured. We propose thatin wheat leaves, the role of photorespiration is to drain artof the carbon exported from the chloroplast as glycolate, towardssucrose synthesis. (Received March 16, 1979; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号