首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica serovar Heidelberg strains are frequently associated with food-borne illness, with recent isolates showing higher rates of resistance to multiple antimicrobial agents. One hundred eighty S. enterica serovar Heidelberg isolates, collected from turkey-associated production and processing sources, were tested for antimicrobial susceptibility and compared by pulsed-field gel electrophoresis (PFGE) and plasmid profile analysis. The potential for the transfer of resistance between strains was studied by conjugation experiments. PFGE analysis using XbaI digestion identified eight clusters (based on 90% similarity), with the largest containing 71% of the isolates. Forty-two percent of the isolates were resistant to at least 1 of the 15 antimicrobial agents tested, and 4% of the isolates were resistant to 8 or more antimicrobial agents. Resistances to streptomycin (32%), tetracycline (30%), and kanamycin (24%) were most commonly detected. Interestingly, the XbaI PFGE profiles of selective multidrug-resistant strains (n = 22) of S. enterica serovar Heidelberg from turkey-associated sources were indistinguishable from the predominant profile (JF6X01.0022) detected in isolates associated with human infections. These isolates were further differentiated into seven distinct profiles following digestion with the BlnI enzyme, with the largest cluster comprising 15 isolates from veterinary diagnostic and turkey processing environments. Conjugation experiments indicated that resistance to multiple antimicrobial agents was transferable among strains with diverse PFGE profiles.  相似文献   

2.
Wild animals not normally exposed to antimicrobial agents can acquire antimicrobial agent-resistant bacteria through contact with humans and domestic animals and through the environment. In this study we assessed the frequency of antimicrobial resistance in generic Escherichia coli isolates from wild small mammals (mice, voles, and shrews) and the effect of their habitat (farm or natural area) on antimicrobial resistance. Additionally, we compared the types and frequency of antimicrobial resistance in E. coli isolates from swine on the same farms from which wild small mammals were collected. Animals residing in the vicinity of farms were five times more likely to carry E. coli isolates with tetracycline resistance determinants than animals living in natural areas; resistance to tetracycline was also the most frequently observed resistance in isolates recovered from swine (83%). Our results suggest that E. coli isolates from wild small mammals living on farms have higher rates of resistance and are more frequently multiresistant than E. coli isolates from environments, such as natural areas, that are less impacted by human and agricultural activities. No Salmonella isolates were recovered from any of the wild small mammal feces. This study suggests that close proximity to food animal agriculture increases the likelihood that E. coli isolates from wild animals are resistant to some antimicrobials, possibly due to exposure to resistant E. coli isolates from livestock, to the resistance genes of these isolates, or to antimicrobials through contact with animal feed.  相似文献   

3.
Bacterial strains were isolated from beach water samples using the original Environmental Protection Agency method for Escherichia coli enumeration and analyzed by pulsed-field gel electrophoresis (PFGE). Identical PFGE patterns were found for numerous isolates from 4 of the 9 days sampled, suggesting environmental replication. 16S rRNA gene sequencing, API 20E biochemical testing, and the absence of β-glucuronidase activity revealed that these clonal isolates were Klebsiella, Citrobacter, and Enterobacter spp. In contrast, 82% of the nonclonal isolates from water samples were confirmed to be E. coli, and 16% were identified as other fecal coliforms. These nonclonal isolates produced a diverse range of PFGE patterns similar to those of isolates obtained directly from untreated sewage and gull droppings. β-Glucuronidase activity was critical in distinguishing E. coli from other fecal coliforms, particularly for the clonal isolates. These findings demonstrate that E. coli is a better indicator of fecal pollution than fecal coliforms, which may replicate in the environment and falsely elevate indicator organism levels.  相似文献   

4.
Previous study indicated that the multi-resistance gene cfr was mainly found in gram-positive bacteria, such as Staphylococcus and Enterococcus, and was sporadically detected in Escherichia coli. Little is known about the prevalence and transmission mechanism of cfr in E. coli. In this study, the presence of cfr in E. coli isolates collected during 2010–2012 from food-producing animals in Guangdong Province of China was investigated, and the cfr-positive E. coli isolates were characterized by PFGE, plasmid profiling, and genetic environment analysis. Of the 839 E. coli isolates, 10 isolates from pig were cfr positive. All the cfr-positive isolates presented a multi-resistance phenotype and were genetically divergent as determined by PFGE. In 8 out of the 10 strains, the cfr gene was located on plasmids of ∼30 kb. Restriction digestion of the plasmids with EcoRI and sequence hybridization with a cfr-specific probe revealed that the cfr-harboring fragments ranged from 6 to 23 kb and a ∼18 kb cfr-carrying fragment was common for the plasmids that were ∼30 kb. Four different genetic environments of cfr were detected, in which cfr is flanked by two identical copies of IS26, which may loop out the intervening sequence through homologous recombination. Among the 8 plasmids of ∼30 kb, 7 plasmids shared the same genetic environment. These results demonstrate plasmid-carried cfr in E. coli and suggest that transposition and homologous recombination mediated by IS26 might have played a rule in the transfer of the cfr gene in E. coli.  相似文献   

5.
A national survey was conducted to determine the prevalence of Escherichia coli O26, O103, O111, and O145 in feces of Scottish cattle. In total, 6,086 fecal pats from 338 farms were tested. The weighted mean percentages of farms on which shedding was detected were 23% for E. coli O26, 22% for E. coli O103, and 10% for E. coli O145. The weighted mean prevalences in fecal pats were 4.6% for E. coli O26, 2.7% for E. coli O103, and 0.7% for E. coli O145. No E. coli O111 was detected. Farms with cattle shedding E. coli serogroup O26, O103, or O145 were widely dispersed across Scotland and were identified most often in summer and autumn. However, on individual farms, fecal shedding of E. coli O26, O103, or O145 was frequently undetectable or the numbers of pats testing positive were small. For serogroup O26 or O103 there was clustering of positive pats within management groups, and the presence of an animal shedding one of these serogroups was a positive predictor for shedding by others, suggesting local transmission of infection. Carriage of vtx was rare in E. coli O103 and O145 isolates, but 49.0% of E. coli O26 isolates possessed vtx, invariably vtx1 alone or vtx1 and vtx2 together. The carriage of eae and ehxA genes was highly associated in all three serogroups. Among E. coli serogroup O26 isolates, 28.9% carried vtx, eae, and ehxA—a profile consistent with E. coli O26 strains known to cause human disease.  相似文献   

6.
Escherichia coli O157:H7 is a human pathogen that is carried and transmitted by cattle. Scotland is known to have one of the highest rates of E. coli O157 human infections in the world. Two hundred ninety-three isolates were obtained from naturally infected cattle and the environment on two farms in the Scottish Highlands. The isolates were typed by pulsed-field gel electrophoresis (PFGE) with XbaI restriction endonuclease enzyme, and 19 different variations in patterns were found. There was considerable genomic diversity within the E. coli O157 population on the two farms. The PFGE pattern of one of the observed subtypes matched exactly with that of a strain obtained from a Scottish patient with hemolytic-uremic syndrome. To examine the stability of an individual E. coli O157 strain, continuous subculturing of a strain was performed 110 times. No variation from the original PFGE pattern was observed. We found three indistinguishable subtypes of E. coli O157 on both study farms, suggesting common sources of infection. We also examined the antibiotic resistance of the isolated strains. Phenotypic studies demonstrated resistance of the strains to sulfamethoxazole (100%), chloramphenicol (3.07%), and at a lower rate, other antibiotics, indicating the preservation of antibiotic sensitivity in a rapidly changing population of E. coli O157.  相似文献   

7.
Nonselected and natural populations of Escherichia coli from 12 animal sources and humans were examined for the presence and types of 14 tetracycline resistance determinants. Of 1,263 unique E. coli isolates from humans, pigs, chickens, turkeys, sheep, cows, goats, cats, dogs, horses, geese, ducks, and deer, 31% were highly resistant to tetracycline. More than 78, 47, and 41% of the E. coli isolates from pigs, chickens, and turkeys were resistant or highly resistant to tetracycline, respectively. Tetracycline MICs for 61, 29, and 29% of E. coli isolates from pig, chickens, and turkeys, respectively, were ≥233 μg/ml. Muliplex PCR analyses indicated that 97% of these strains contained at least 1 of 14 tetracycline resistance genes [tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetS, tetA(P), tetQ, and tetX] examined. While the most common genes found in these isolates were tetB (63%) and tetA (35%), tetC, tetD, and tetM were also found. E. coli isolates from pigs and chickens were the only strains to have tetM. To our knowledge, this represents the first report of tetM in E. coli.  相似文献   

8.
Campylobacter jejuni is one of the most common bacterial causes of human gastroenteritis, and recent findings suggest that turkeys are an important reservoir for this organism. In this study, 80 C. jejuni isolates from eastern North Carolina were characterized for resistance to nine antimicrobials, and strain types were determined by fla typing, pulsed-field gel electrophoresis (PFGE) with SmaI and KpnI, and (for 41 isolates) multilocus sequence typing (MLST). PFGE analysis suggested that many of the isolates (37/40 [ca. 93%]) in a major genomic cluster had DNA that was partially methylated at SmaI sites. Furthermore, 12/40 (30%) of the isolates in this cluster were completely resistant to digestion by KpnI, suggesting methylation at KpnI sites. MLST of 41 isolates identified 10 sequence types (STs), of which 4 were new. Three STs (ST-1839, ST-2132 and the new ST-2934) were predominant and were detected among isolates from different farms. The majority of the isolates (74%) were resistant to three or more antimicrobials, and resistance to ciprofloxacin was common (64%), whereas resistance to the other drug of choice for treatment of human campylobacteriosis, erythromycin, was never encountered. Most (33/34) of the kanamycin-resistant isolates were also resistant to tetracycline; however, only ca. 50% of the tetracycline-resistant isolates were also kanamycin resistant. Isolates with certain antimicrobial resistance profiles had identical or closely related strain types. Overall, the findings suggest dissemination of certain clonal groups of C. jejuni isolates in the turkey production industry of this region.  相似文献   

9.
This study was conducted to examine the rate of contamination and the molecular characteristics of enteric bacteria isolated from a selection of food sources in Vietnam. One hundred eighty raw food samples were tested; 60.8% of meat samples and 18.0% of shellfish samples were contaminated with Salmonella spp., and more than 90% of all food sources contained Escherichia coli. The isolates were screened for antibiotic resistance against 15 antibiotics, and 50.5% of Salmonella isolates and 83.8% of E. coli isolates were resistant to at least one antibiotic. Isolates were examined for the presence of mobile genetic elements conferring antibiotic resistance. Fifty-seven percent of E. coli and 13% of Salmonella isolates were found to contain integrons, and some isolates contained two integrons. Sequencing results revealed that the integrons harbored various gene cassettes, including aadA1, aadA2, and aadA5 (resistance to streptomycin and spectinomycin), aacA4 (resistance to aminoglycosides), the dihydrofolate reductase gene cassettes dhfrXII, dfrA1, and dhfrA17 (trimethoprim resistance), the beta-lactamase gene blaPSE1 (ampicillin resistance), and catB3 (chloramphenicol resistance). Plasmids were also detected in all 23 antibiotic-resistant Salmonella isolates and in 33 E. coli isolates. Thirty-five percent of the Salmonella isolates and 76% of the E. coli isolates contained plasmids of more than 95 kb, and some of the isolates contained two large plasmids. Conjugation experiments showed the successful transfer of all or part of the antibiotic resistance phenotypes among the Salmonella and E. coli food isolates. Our results show that enteric bacteria in raw food samples from Vietnam contain a pool of mobile genetic elements and that the transfer of antibiotic resistance can readily occur between similar bacteria.  相似文献   

10.
The distribution of Clostridium botulinum serotypes A, B, E, and F in Finnish trout farms was examined. A total of 333 samples were tested with a neurotoxin-specific PCR assay. C. botulinum type E was found in 68% of the farm sediment samples, in 15% of the fish intestinal samples, and in 5% of the fish skin samples. No other serotypes were found. The spore counts determined by the most-probable-number method were considerably higher for the sediments than for the fish intestines and skin; the average values were 2,020, 166, and 310 C. botulinum type E spores kg−1, respectively. The contamination rates in traditional freshwater ponds and marine net cages were high, but in concrete ponds equipped with sediment suction devices the contamination rates were significantly lower. Pulsed-field gel electrophoresis (PFGE) typing of 42 isolates obtained in this survey and 12 North American reference strains generated 28 pulsotypes upon visual inspection, suggesting that there was extensive genetic diversity and that the discriminatory power of PFGE typing in C. botulinum type E was high. A numerical analysis of SmaI-XmaI macrorestriction profiles confirmed these findings, as it divided the 54 isolates into 15 clusters at a similarity level of 76%. For this material, this level of similarity corresponded to a three-band difference in the macrorestriction profiles, which indicated that there is no genotypic proof of a close epidemiological relationship among the clusters.  相似文献   

11.
Extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) were isolated from infants hospitalized in a neonatal, post-surgery ward during a four-month-long nosocomial outbreak and six-month follow-up period. A multi-locus variable number tandem repeat analysis (MLVA), using 10 loci (GECM-10), for ‘generic’ (i.e., non-STEC) E. coli was applied for sub-species-level (i.e., sub-typing) delineation and characterization of the bacterial isolates. Ten distinct GECM-10 types were detected among 50 isolates, correlating with the types defined by pulsed-field gel electrophoresis (PFGE), which is recognized to be the ‘gold-standard’ method for clinical epidemiological analyses. Multi-locus sequence typing (MLST), multiplex PCR genotyping of bla CTX-M, bla TEM, bla OXA and bla SHV genes and antibiotic resistance profiling, as well as a PCR assay specific for detecting isolates of the pandemic O25b-ST131 strain, further characterized the outbreak isolates. Two clusters of isolates with distinct GECM-10 types (G06-04 and G07-02), corresponding to two major PFGE types and the MLST-based sequence types (STs) 131 and 1444, respectively, were confirmed to be responsible for the outbreak. The application of GECM-10 sub-typing provided reliable, rapid and cost-effective epidemiological characterizations of the ESBL-producing isolates from a nosocomial outbreak that correlated with and may be used to replace the laborious PFGE protocol for analyzing generic E. coli.  相似文献   

12.
Escherichia coli O157:H7 and O157 nonmotile isolates (E. coli O157) previously were recovered from feces, hides, and carcasses at four large Midwestern beef processing plants (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999–3003, 2000). The study implied relationships between cattle infection and carcass contamination within single-source lots as well as between preevisceration and postprocessing carcass contamination, based on prevalence. These relationships now have been verified based on identification of isolates by genomic fingerprinting. E. coli O157 isolates from all positive samples were analyzed by pulsed-field gel electrophoresis of genomic DNA after digestion with XbaI. Seventy-seven individual subtypes (fingerprint patterns) grouping into 47 types were discerned among 343 isolates. Comparison of the fingerprint patterns revealed three clusters of isolates, two of which were closely related to each other. Remarkably, isolates carrying both Shiga toxin genes and nonmotile isolates largely fell into specific clusters. Within lots analyzed, 68.2% of the postharvest (carcass) isolates matched preharvest (animal) isolates. For individual carcasses, 65.3 and 66.7% of the isolates recovered postevisceration and in the cooler, respectively, matched those recovered preevisceration. Multiple isolates were analyzed from some carcass samples and were found to include strains with different genotypes. This study suggests that most E. coli O157 carcass contamination originates from animals within the same lot and not from cross-contamination between lots. In addition, the data demonstrate that most carcass contamination occurs very early during processing.  相似文献   

13.
Infections caused by Extended spectrum β-lactamase (ESBL)-producing E. coli are an emerging global problem, threatening the effectiveness of the extensively used β-lactam antibiotics. ESBL dissemination is facilitated by plasmids, transposons, and other mobile elements. We have characterized the plasmid content of ESBL-producing E. coli from human urinary tract infections. Ten diverse isolates were selected; they had unrelated pulsed-field gel electrophoresis (PFGE) types (<90% similarity), were from geographically dispersed locations and had diverging antibiotic resistance profiles. Three isolates belonged to the globally disseminated sequence type ST131. ESBL-genes of the CTX-M-1 and CTX-M-9 phylogroups were identified in all ten isolates. The plasmid content (plasmidome) of each strain was analyzed using a combination of molecular methods and high-throughput sequencing. Hidden Markov Model-based analysis of unassembled sequencing reads was used to analyze the genetic diversity of the plasmid samples and to detect resistance genes. Each isolate contained between two and eight distinct plasmids, and at least 22 large plasmids were identified overall. The plasmids were variants of pUTI89, pKF3-70, pEK499, pKF3-140, pKF3-70, p1ESCUM, pEK204, pHK17a, p083CORR, R64, pLF82, pSFO157, and R721. In addition, small cryptic high copy-number plasmids were frequent, containing one to seven open reading frames per plasmid. Three clustered groups of such small cryptic plasmids could be distinguished based on sequence similarity. Extrachromosomal prophages were found in three isolates. Two of them resembled the E. coli P1 phage and one was previously unknown. The present study confirms plasmid multiplicity in multi-resistant E. coli. We conclude that high-throughput sequencing successfully provides information on the extrachromosomal gene content and can be used to generate a genetic fingerprint of possible use in epidemiology. This could be a valuable tool for tracing plasmids in outbreaks.  相似文献   

14.
There is a growing concern that antibiotic usage in animal production has selected for resistant food-borne bacteria. Since tetracyclines are common therapeutic antibiotics used in poultry production, we sought to evaluate the effects of oral administration on the resistance of poultry commensal bacteria and the intestinal bacterial community structure. The diversity indices calculated from terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA amplicons did not indicate significant changes in the cecal bacterial community in response to oxytetracycline. To evaluate its effects on cultivable commensals, Enterococcus spp., Escherichia coli, and Campylobacter spp. were isolated from the cecal droppings of broiler chickens. Enterococcus spp. and E. coli expressed tetracycline MICs of >8 μg/ml and harbored a variety of tet resistance determinants regardless of the tetracycline exposure history of the birds. The enterococcal isolates possessed tetM (61%), tetL (25.4%), and tetK (1.3%), as well as tetO (52.5%), the determinant known to confer a tetracycline resistance phenotype in Campylobacter jejuni. E. coli isolates harbored tetA (32.2%) or tetB (30.5%). Tetracycline MICs remained at <2 μg/ml for Campylobacter isolates before and after tetracycline treatment of the chickens, even though isolates expressing MICs of >16 μg/ml were commonly cultured from flocks that did not receive oxytetracycline. The results imply that complex ecological and genetic factors contribute to the prevalence of antibiotic resistance arising from resistance gene transfer in the production environment.  相似文献   

15.
Salmonella enterica serovar Heidelberg frequently causes food-borne illness in humans. There are few data on the prevalence, antimicrobial susceptibility, and genetic diversity of Salmonella serovar Heidelberg isolates in retail meats. We compared the prevalences of Salmonella serovar Heidelberg in a sampling of 20,295 meats, including chicken breast (n = 5,075), ground turkey (n = 5,044), ground beef (n = 5,100), and pork chops (n = 5,076), collected during 2002 to 2006. Isolates were analyzed for antimicrobial susceptibility and compared genetically using pulsed-field gel electrophoresis (PFGE) and PCR for the blaCMY gene. A total of 298 Salmonella serovar Heidelberg isolates were recovered, representing 21.6% of all Salmonella serovars from retail meats. One hundred seventy-eight (59.7%) were from ground turkey, 110 (36.9%) were from chicken breast, and 10 (3.4%) were from pork chops; none was found in ground beef. One hundred ninety-eight isolates (66.4%) were resistant to at least one compound, and 49 (16.4%) were resistant to at least five compounds. Six isolates (2.0%), all from ground turkey, were resistant to at least nine antimicrobials. The highest resistance in poultry isolates was to tetracycline (39.9%), followed by streptomycin (37.8%), sulfamethoxazole (27.7%), gentamicin (25.7%), kanamycin (21.5%), ampicillin (19.8%), amoxicillin-clavulanic acid (10.4%), and ceftiofur (9.0%). All isolates were susceptible to ceftriaxone and ciprofloxacin. All ceftiofur-resistant strains carried blaCMY. PFGE using XbaI and BlnI showed that certain clones were widely dispersed in different types of meats and meat brands from different store chains in all five sampling years. These data indicate that Salmonella serovar Heidelberg is a common serovar in retail poultry meats and includes widespread clones of multidrug-resistant strains.  相似文献   

16.
Bacteria from crops of 1- and 5-week-old broiler chickens fed with two brands (diets A and B) of wheat-based diets were isolated on Lactobacillus-selective medium and identified (n = 300) based on partial 16S rRNA gene sequence. The most abundant Lactobacillus species were L. reuteri (33%), L. crispatus (18.7%), and L. salivarius (13.3%). Regardless of farm and feed, L. reuteri was the most abundant species (P < 0.005) in the crops of the younger chickens. However, the amount of L. reuteri was significantly reduced in the crops of the 5-week-old chickens regardless of the feed (P = 0.016). The diversity of L. reuteri isolates was studied by fatty acid analysis, and the 94 L. reuteri isolates could be arranged into several clusters. The nisin sensitivities of the L. reuteri isolates were determined because nisin is a candidate coccidiostat. Sensitive isolates were found more frequently in younger chickens (77%) than in 5-week-old chickens (23%), whereas chickens fed with commercial feed B had a higher proportion of nisin-resistant isolates (73%) than did chickens fed with feed A (45%). Nisin-resistant strains are potential candidates for adjunct cultures for maintaining L. reuteri in its natural niche in the crop and are potential targets for genetic engineering with nisin-selectable food-grade vectors. The diversity of the L. reuteri population suggested that one should consider including several strains representing different clusters and nisin resistance phenotypes in candidate probiotic feed supplements for chickens.  相似文献   

17.
A 14-month longitudinal study was conducted on four dairy farms (C, H, R, and X) in Wisconsin to ascertain the source(s) and dissemination of Escherichia coli O157:H7. A cohort of 15 heifer calves from each farm were sampled weekly by digital rectal retrieval from birth to a minimum of 7 months of age (range, 7 to 13 months). Over the 14 months of the study, the cohort heifers and other randomly selected cattle from farms C and H tested negative. Farm R had two separate periods of E. coli O157:H7 shedding lasting 4 months (November 1995 to February 1996) and 1 month (July to August 1996), while farm X had at least one positive cohort animal for a 5-month period (May to October 1996). Heifers shed O157:H7 strains in feces for 1 to 16 weeks at levels ranging from 2.0 × 102 to 8.7 × 104 CFU per g. E. coli O157:H7 was also isolated from other noncohort cattle, feed, flies, a pigeon, and water associated with the cohort heifers on farms R and/or X. When present in animal drinking water, E. coli O157:H7 disseminated through the cohort cattle and other cattle that used the water source. E. coli O157:H7 was found in water at <1 to 23 CFU/ml. Genomic subtyping by pulsed-field gel electrophoresis demonstrated that a single O157:H7 strain comprised a majority of the isolates from cohort and noncohort cattle, water, and other positive samples (i.e., from feed, flies, and a pigeon, etc.) on a farm. The isolates from farm R displayed two predominant XbaI restriction endonuclease digestion profiles (REDP), REDP 3 and REDP 7, during the first and second periods of shedding, respectively. Six additional REDP that were ≥89% similar to REDP 3 or REDP 7 were identified among the farm R isolates. Additionally, the REDP of an O157:H7 isolate from a heifer on farm R in 1994 was indistinguishable from REDP 3. Farm X had one O157:H7 strain that predominated (96% of positive samples had strains with REDP 9), and the REDP of an isolate from a heifer in 1994 was indistinguishable from REDP 9. These results suggest that E. coli O157:H7 is disseminated from a common source on farms and that strains can persist in a herd for a 2-year period.  相似文献   

18.
In Mekong Delta farms (Vietnam), antimicrobials are extensively used, but limited data are available on levels of antimicrobial resistance (AMR) among Escherichia coli isolates. We performed a structured survey of AMR in E. coli isolates (n = 434) from 90 pig, chicken, and duck farms. The results were compared with AMR among E. coli isolates (n = 234) from 66 small wild animals (rats and shrews) trapped on farms and in forests and rice fields. The isolates were susceptibility tested against eight antimicrobials. E. coli isolates from farmed animals were resistant to a median of 4 (interquartile range [IQR], 3 to 6) antimicrobials versus 1 (IQR, 1 to 2) among wild mammal isolates (P < 0.001). The prevalences of AMR among farmed species isolates (versus wild animals) were as follows: tetracycline, 84.7% (versus 25.6%); ampicillin, 78.9% (versus 85.9%); trimethoprim-sulfamethoxazole, 52.1% (versus 18.8%); chloramphenicol, 39.9% (versus 22.5%); amoxicillin-clavulanic acid, 36.6% (versus 34.5%); and ciprofloxacin, 24.9% (versus 7.3%). The prevalence of multidrug resistance (MDR) (resistance against three or more antimicrobial classes) among pig isolates was 86.7% compared to 66.9 to 72.7% among poultry isolates. After adjusting for host species, MDR was ∼8 times greater among isolates from wild mammals trapped on farms than among those trapped in forests/rice fields (P < 0.001). Isolates were assigned to unique profiles representing their combinations of susceptibility results. Multivariable analysis of variance indicated that AMR profiles from wild mammals trapped on farms and those from domestic animals were more alike (R2 range, 0.14 to 0.30) than E. coli isolates from domestic animals and mammals trapped in the wild (R2 range, 0.25 to 0.45). The results strongly suggest that AMR on farms is a key driver of environmental AMR in the Mekong Delta.  相似文献   

19.
The prevalence of Escherichia coli O157 associated with feedlot cattle in Saskatchewan was determined in a 10-month longitudinal study (3 feedlots) and a point prevalence study (20 feedlots). The prevalence of E. coli O157 at the three different sites in the horizontal study varied from 2.5 to 45%. The point prevalence of E. coli O157 among Saskatchewan cattle from 20 different feedlots ranged from 0% to a high of 57%. A statistically significant (P = 0.003) positive correlation was determined to exist between the density of cattle and the E. coli O157 prevalence rate. A significant correlation (P = 0.006) was also found between the E. coli O157 percent prevalence and the number of cattle housed/capacity ratio. All 194 E. coli O157 isolates obtained were highly virulent, and random amplified polymorphic DNA PCR analysis revealed that the isolates grouped into 39 different E. coli O157 subtypes, most of which were indigenous to specific feedlots. Two of the most predominant subtypes were detected in 11 different feedlots and formed distinct clusters in two geographic regions in the province. Antimicrobial susceptibility testing of the E. coli O157 isolates revealed that 10 were multidrug resistant and that 73 and 5 were resistant to sulfisoxazole and tetracycline, respectively.  相似文献   

20.
Although Escherichia coli typically colonizes the intestinal tract and vagina of giant pandas, it has caused enteric and systemic disease in giant pandas and greatly impacts the health and survival of this endangered species. In order to understand the distribution and characteristics of E. coli from giant pandas, 67 fecal and 30 vaginal E. coli isolates from 21 giant pandas were characterized for O serogroups, phylogenetic groups, antimicrobial susceptibilities, and pulsed-field gel electrophoresis (PFGE) profiles. In addition, these isolates were tested for the presence of extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) by multiplex PCR detection of specific virulence genes. The most prevalent serogroups for all E. coli isolates were O88, O18, O167, O4, and O158. ExPEC isolates were detected mostly in vaginal samples, and DEC isolates were detected only in fecal samples. Phylogenetic group B1 predominated in fecal isolates, while groups B2 and D were frequently detected in vaginal isolates. Resistance to trimethoprim-sulfamethoxazole was most frequently observed, followed by resistance to nalidixic acid and tetracycline. All except five isolates were typeable by using XbaI and were categorized into 74 PFGE patterns. Our findings indicate that panda E. coli isolates exhibited antimicrobial resistance, and potentially pathogenic E. coli isolates were present in giant pandas. In addition, these E. coli isolates were genetically diverse. This study may provide helpful information for developing strategies in the future to control E. coli infections of giant pandas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号