首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Na+/H+ exchanger is an integral membrane protein found in the plasma membrane of eukaryotic and prokaryotic cells. In eukaryotes it functions to exchange one proton for a sodium ion. In mammals it removes intracellular protons while in plants and fungal cells the plasma membrane form removes intracellular sodium in exchange for extracellular protons. In this study we used the Na+/H+ exchanger of Schizosaccharomyces pombe (Sod2) as a model system to study amino acids critical for activity of the protein. Twelve mutant forms of the Na+/H+ exchanger were examined for their ability to translocate protons as assessed by a cytosensor microphysiometer. Mutation of the amino acid Histidine 367 resulted in defective proton translocation. The acidic residues Asp145, Asp178, Asp266 and Asp267 were important in the proton translocation activity of the Na+/H+ exchanger. Mutation of amino acids His98, His233 and Asp241 did not significantly impair proton translocation by the Na+/H+ exchanger. These results confirm that polar amino acids are important in proton flux activity of Na+/H+ exchangers.  相似文献   

3.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

4.
Summary In the presence of inhibitors for mitochondrial H+-ATPase, (Na++K+)- and Ca2+-ATPases, and alkaline phosphatase, sealed brush-border membrane vesicles hydrolyse externally added ATP demonstrating the existence of ATPases at the outside of the membrane (ecto-ATPases). These ATPases accept several nucleotides, are stimulated by Ca2+ and Mg2+, and are inhibited by N,N-dicyclohexylcarbodiimide (DCCD), but not by N-ethylmaleimide (NEM). They occur in both brushborder and basolateral membranes. Opening of brush-border membrane vesicles with Triton X-100 exposes ATPases located at the inside (cytosolic side) of the membrane. These detergent-exposed ATPases prefer ATP, are activated by Mg2+ and Mn2+, but not by Ca2+, and are inhibited by DCCD as well as by NEM. They are present in brush-border, but not in basolateral membranes. As measured by an intravesicularly trapped pH indicator, ATP-loaded brush-border membrane vesicles extrude protons by a DCCD- and NEM-sensitive pump. ATP-driven H+ secretion is electrogenic and requires either exit of a permeant anion (Cl) or entry of a cation, e.g., Na+ via electrogenic Na+/d-glucose and Na+/l-phenylalanine uptake. In the presence of Na+, ATP-driven H+ efflux is stimulated by blocking the Na+/H+ exchanger with amiloride. These data prove the coexistence of Na+-coupled substrate transporters, Na+/H+ exchanger, and an ATP-driven H+ pump in brush-border membrane vesicles. Similar location and inhibitor sensitivity reveal the identity of ATP-driven H+ pumps with (a part of) the DCCD- and NEM-sensitive ATPases at the cytosolic side of the brush-border membrane.  相似文献   

5.
The Na+/H+ exchangers (NHEs) catalyze the transport of Na+ in exchange for H+ across membranes in organisms and are required for numerous physiological processes. Here we report the cloning and characterization of a novel human NHEDC1 (Na+/H+ exchanger like domain containing 1) gene, which was mapped to human chromosome 4p24. This cDNA is 1859 bp in length, encoding a putative protein of 515 amino acids. The NHEDC1 proteins are highly conserved in mammals including human, mouse, rat, and Macaca fascicularis. One remarkable characteristic of human NHEDC1 gene is that it is exclusively expressed in the testis by RT-PCR analysis. Western blot analysis showed that the molecular weight of NHEDC1 is about 56 KDa. Guangming Ye and Cong Chen contributed equally to this work.  相似文献   

6.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

7.
Summary Intracellular Ca2+ has been suggested to play an important role in the regulation of epithelial Na+ transport. Previous studies showed that preincubation of toad urinary bladder, a tight epithelium, in Ca2+-free medium enhanced Na+ uptake by the subsequently isolated apical membrane vesicles, suggesting the downregulation of Na+ entry across the apical membrane by intracellular Ca2+. In the present study, we have examined the effect of Ca2+-free preincubation on apical membrane Na+ transport in a leaky epithelium, i.e., brush border membrane (BBM) of rabbit renal proximal tubule. In contrast to toad urinary bladder, it was found that BBM vesicles derived from proximal tubules incubated in 1mm Ca2+ medium exhibited higher Na+ uptake than those derived from proximal tubules incubated in Ca2+-free EGTA medium. Such effect of Ca2+ in the preincubation medium was temperature dependent and could not be replaced by another divalent cation, Ba2+ (1mm). Ca2+ in the preincubation medium did not affect Na+-dependent BBM glucose uptake, and its effect on BBM Na+ uptake was pH gradient dependent and amiloride (10–3 m) sensitive, suggesting the involvement of Na+/H+ antiport system. Addition of verapamil (10–4 m) to 1mm Ca2+ preincubation medium abolished while ionomycin (10–6 m) potentiated the effect of Ca2+ to increase BBM Na+ uptake, suggesting that the effect of Ca2+ in the preincubation medium is likely to be mediated by Ca2+-dependent cellular pathways and not due to a direct effect of extracellular Ca2+ on BBM. Neither the proximal tubule content of cAMP nor the inhibitory effect of 8, bromo-cAMP (0.1mm) on BBM Na+ uptake was affected by the presence of Ca2+ in the preincubation medium, suggesting that Ca2+ in the preincubation medium did not increase BBM Na+ uptake by removing the inhibitory effect of cAMP. Addition of calmodulin inhibitor, trifluoperazine (10–4 m) to 1mm Ca2+ preincubation medium did not prevent the increase in BBM Na+ uptake. The effect of Ca2+ was, however, abolished when protein kinase C in the proximal tubule was downregulated by prolonged (24 hr) incubation with phorbol 12-myristate 13-acetate (10–6 m). In summary, these results show the Ca2+ dependency of Na+ transport by renal BBM, possibly through stimulation of Na+/H+ exchanger by protein kinase C.  相似文献   

8.
The Vc-NhaD is an Na+/H+ antiporter from Vibrio cholerae belonging to a new family of bacterial Na+/H+ antiporters, the NhaD family. In the present work we mutagenized five conserved Asp and Glu residues and one conserved Thr residue to Ala in order to identify amino acids that are critical for the antiport activity. All mutations fall into two distinct groups: (i) four variants, Glu100Ala, Glu251Ala, Glu342Ala, and Asp393Ala, did not abolish antiport activity but shifted the pH optimum to more alkaline pH, and (ii) variants Asp344Ala, Asp344Asn, and Thr345Ala caused a complete loss of both Na+/H+ and Li+/H+ antiport activity whereas the Asp344Glu variant exhibited reduced Na+/H+ and Li+/H+ antiport activity. This is the first mutational analysis of the antiporter of NhaD type and the first demonstration of Thr residue being indispensable for Na+/H+ antiport. We discuss the possible role of Asp344 and Thr345 in the functioning of Vc-NhaD.  相似文献   

9.
The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt sensitivity of a yeast strain lacking the major Na+ efflux systems by decreasing the cellular Na+ content while increasing K+ content. Na+/H+ exchange activity of purified plasma membrane from yeast cells expressing TaSOS1 was higher than controls transformed with empty vector. These results demonstrate that TaSOS1 contributes to plasma membrane Na+/H+ exchange.  相似文献   

10.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

11.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

12.
Ammonium ion transport—a cause of cell death   总被引:1,自引:0,他引:1  
Ammonium can be transported into the cell by ion pumps in the cytoplasmic membrane. Ammonia then diffuse out through the cell membrane. A futile cycle is created that results in cytoplasmic acidification and extracellular alkalinisation. Ammonium transport can be quantified by measuring the extracellular pH changes occurring in a cell suspension (in PBS) after addition of ammonium. By using this technique, in combination with specific inhibitors of various ion pumps, it was shown that ammonium ions are transported across the cytoplasmic membrane by the Na+K+2Cl--cotransporter in both hybridoma and myeloma cells. Further, the Na+/H+ exchanger, which regulates intracellular pH by pumping out protons, was shown to be active during ammonium exposure. The viability of hybridoma cells suspended in PBS and exposed to NH inf4 sup+ for only 90 min, was reduced by 11% (50% necrosis and 50% apoptosis). A control cell suspension did not loose viability during this time. Turning off the activity of the Na+/H+ exchanger (by amiloride) during ammonium exposure decreased viability further, while inhibiting transport itself (by bumetanide) restored viability to the same level as for the control experiment with bumetanide alone. These results show that one effect of ammonia/ammonium on cell physiology is specifically related to the inward transport of ammonium ions by membrane bound ion pumps.Abbreviations q pH specific rate of pH increase (pH units per min and 106 cells per ml)  相似文献   

13.
We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTPγS was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the γ-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter.  相似文献   

14.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

15.
16.
Sod2 is the plasma membrane Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) (126FPQINFLGSLLIAGCITSTDPVLSALI152) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125–154). NMR analysis yielded a model with two helical regions (amino acids 128–142 and 147–154) separated by an unwound region (amino acids 143–146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na+/H+ exchanger and TM VI of isoform 1 of mammalian Na+/H+ exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.  相似文献   

17.
These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K+-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K+-independent activity showed a pH optimum around 6.5–7.0, while the K+-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K+-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K+-independent activity. Na+ did not affect K+-independent activity at all, while the same ligand concentration inhibited sharply the K+-dependent activity; this inhibition was not competitive with the substrate,p-nitrophenyl phosphate. K+-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K+-independent activity, but this nucleotide behaved as a competitive inhibitor top-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competively to the substrate, so it could be considered as the second product of the reaction sequence.Abbreviations used p-NPP p-nitrophenylphosphate - p-NPPase rho-nitrophenylphosphatase activity  相似文献   

18.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

19.
Summary The Na+–H+ exchanger from solubilized rabbit renal brush border membranes is inhibited by cAMP-dependent protein kinase (PKA) mediated protein phosphorylation. To characterize this inhibitory response and its sensitivity to limited proteolysis, the activity of the transporter was assayed after reconstitution of the proteins into artificial lipid vesicles. Limited trypsin digestion increased the basal rate of proton gradient-stimulated, amiloride-inhibitable sodium uptake in reconstituted proteoliposomes and blocked the inhibitory response to PKA-mediated protein phosphorylation. To determine if the inhibitory response to PKA-mediated protein phosphorylation could be restored to the trypsin-treated solubilized proteins, nontrypsinized solubilized brush border membrane proteins were separated by column chromatography. The addition of small molecular weight polypeptides, fractionated on Superose-12 FPLC (V e=0.7), to trypsinized solubilized brush border membrane proteins restored the inhibitory response to PKA-mediated protein phosphorylation. Similarly, the addition of the 0.1m NaCl fraction from an anion exchange column, Mono Q-FPLC, also restored the inhibitory response to PKA. Both protein fractions contained a common 42–43 kDa protein which was preferentially phosphorylated by PKA.These results indicate that limited trypsin digestion dissociates the activity of the renal Na+–H+ exchanger from its regulation by PKA. It is suggested that trypsin cleaves an inhibitory component of the transporter and that this component is the site of PKA-mediated regulation. Phosphoprotein analysis of fractions that restored PKA regulation raises the possibility that a polypeptide of 42–43 kDa is involved in the inhibition of the renal Na+–H+ exchanger by PKA-mediated, protein phosphorylation.  相似文献   

20.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号