首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Rosén  J H Yu    T H Adams 《The EMBO journal》1999,18(20):5592-5600
flbA encodes an Aspergillus nidulans RGS (regulator of G protein signaling) domain protein that antagonizes FadA (G(i)alpha-subunit of heterotrimeric G protein)-mediated growth signaling to allow asexual development. We previously defined and characterized five suppressors of flbA (sfa) loss-of-function mutations and showed that one suppressor (sfaB) resulted from a novel dominant-negative allele of fadA. In this report we show that a second suppressor gene (sfaD) is predicted to encode the beta subunit of a heterotrimeric G protein. Deletion of sfaD suppressed all defects resulting from complete loss-of-flbA function mutations, caused a hyperactive sporulation phenotype and severely reduced vegetative growth. However, the sfaD deletion could not suppress the growth activation caused by dominant-activating fadA alleles, indicating that constitutively active FadA can cause proliferative growth in the absence of Gbetagamma signaling. We propose that SfaD and FadA are both positive growth regulators with partially overlapping functions and that FlbA has an important role in controlling the activities of both proteins. Inactivation of signaling events stimulated by both components of the heterotrimeric G protein is essential for both sexual and asexual sporulation.  相似文献   

2.
3.
J H Yu  J Wieser    T H Adams 《The EMBO journal》1996,15(19):5184-5190
flbA encodes an Aspergillus nidulans RGS (regulator of G protein signaling) domain protein that is required for control of mycelial proliferation and activation of asexual sporulation. We identified a dominant mutation in a second gene, fadA, that resulted in a very similar phenotype to flbA loss-of-function mutants. Analysis of fadA showed that it encodes the alpha-subunit of a heterotrimeric G protein, and the dominant phenotype resulted from conversion of glycine 42 to arginine (fadA(G42R)). This mutation is predicted to result in a loss of intrinsic GTPase activity leading to constitutive signaling, indicating that activation of this pathway leads to proliferation and blocks sporulation. By contrast, a fadA deletion and a fadA dominant-interfering mutation (fadA(G203R)) resulted in reduced growth without impairing sporulation. In fact, the fadA(G203R) mutant was a hyperactive asexual sporulator and produced elaborate sporulation structures, called conidiophores, under environmental conditions that blocked wild-type sporulation. Both the fadA(G203R) and the fadA deletion mutations suppressed the flbA mutant phenotype as predicted if the primary role of FlbA in sporulation is in blocking activation of FadA signaling. Because overexpression of flbA could not suppress the fadA(G42R) mutant phenotype, we propose that FlbA's role in modulating the FadA proliferation signal is dependent upon the intrinsic GTPase activity of wild-type FadA.  相似文献   

4.
Seo JA  Han KH  Yu JH 《Genetics》2005,171(1):81-89
Vegetative growth signaling in the filamentous fungus Aspergillus nidulans is primarily mediated by the heterotrimeric G-protein composed of FadA (G alpha), SfaD (G beta), and a presumed G gamma. Analysis of the A. nidulans genome identified a single gene named gpgA encoding a putative G gamma-subunit. The predicted GpgA protein consists of 90 amino acids showing 72% similarity with yeast Ste18p. Deletion (delta) of gpgA resulted in restricted vegetative growth and lowered asexual sporulation. Moreover, similar to the delta sfaD mutant, the delta gpgA mutant was unable to produce sexual fruiting bodies (cleistothecia) in self-fertilization and was severely impaired with cleistothecial development in outcross, indicating that both SfaD and GpgA are required for fruiting body formation. Developmental and morphological defects caused by deletion of flbA encoding an RGS protein negatively controlling FadA-mediated vegetative growth signaling were suppressed by delta gpgA, indicating that GpgA functions in FadA-SfaD-mediated vegetative growth signaling. However, deletion of gpgA could not bypass the need for the early developmental activator FluG in asexual sporulation, suggesting that GpgA functions in a separate signaling pathway. We propose that GpgA is the only A. nidulans G gamma-subunit and is required for normal vegetative growth as well as proper asexual and sexual developmental progression.  相似文献   

5.
6.
C A D'Souza  B N Lee  T H Adams 《Genetics》2001,158(3):1027-1036
We showed previously that a DeltafluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG ( approximately 400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of DeltafluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from DeltaflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.  相似文献   

7.
8.
9.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

10.
11.
Y. H. Chiu  N. R. Morris 《Genetics》1995,141(2):453-464
Nuclear migration plays an important role in the growth and development of many organisms including the filamentous fungus Aspergillus nidulans. We have cloned three genes from A. nidulans, nudA, nudC, and nudF, in which mutations affect nuclear migration. The nudA gene encodes the heavy chain of cytoplasmic dynein. The nudC gene encodes a 22-kD protein. The nudF gene was identified as an extracopy suppressor of the temperature sensitive (ts(-)) nudC3 mutation. The nudC3 mutation substantially decreases the intracellular concentration of the nudF protein at restrictive temperature. This is restored toward the normal level by an extra copy of nudF. To identify other genes whose products interact directly or indirectly with the NUDC protein, we have isolated a set of extragenic suppressors of the nudC3 temperature-sensitive mutation. Genetic analysis of 16 such extragenic suppressors showed them to represent nine different genes, designated sncA-sncI (for suppressor of nudC). sncA-sncH were either dominant or semidominant in diploids homozygous for nudC3 and heterozygous for the snc mutations. All of the suppressors reversed the ts(-) phenotype of nudC3 by restoring the intracellular concentration of the NUDF protein.  相似文献   

12.
We describe interactions between maternal-effect lethal mutations in four genes of Caenorhabditis elegans whose products appear to be involved in the meiotic and mitotic divisions of the one-cell embryo. Mitosis is disrupted by two dominant temperature-sensitive gain-of-function maternal-effect lethal mutations, mei-1(ct46) and mel-26(ct61), and by recessive loss-of-function maternal-effect lethal mutations of zyg-9. The phenotypic defects resulting from these mutations are similar. Doubly mutant combinations show a strong enhancement of the maternal-effect lethality under semipermissive conditions, suggesting that the mutant gene products interact. We isolated 15 dominant suppressors of the gain-of-function mutation mei-1(ct46). Thirteen of these suppressors are apparently intragenic, but 11 of them suppress in trans as well as cis. Two extragenic suppressors define a new gene, mei-2. The suppressor mutations in these two genes also result in recessive maternal-effect lethality, but with meiotic rather than mitotic defects. Surprisingly, most of these suppressors are also able to suppress mel-26(ct61) in addition to mei-1(ct46). The products of the four genes mei-1, mei-2, zyg-9 and mel-26 could be responsible for some of the specialized features that distinguish the meiotic from the mitotic divisions in the one-cell embryo.  相似文献   

13.
Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.  相似文献   

14.
Summary Twenty-one suppressor gene mutations which suppress the met-5.1 missense mutation of Coprinus were separated into six groups (A-F) on the basis of dominance or recessiveness, linkage to the met-5 locus, comlementation in heterozygous cells and growth behaviour. The actual number of suppressor loci could not be determined because crosses between suppressed mutants were inviable. The allele specificity of group A, C, D and F suppressors was confirmed by appropriate crosses. Group B and E suppressors were not tested because of close linkage to the met-5 locus. No evidence for functional suppression of met-5 mutations was obtained thus it is likely that all the suppressors cause translational corelation of met-5.1. Suppressors in four groups (C-F) have properties expected of tRNA structural gene mutations: the group C mutation is dominant, the other mutations are recessive but do not complement in heterozygous cells. The relative efficiencies of the tRNA species involved was assessed by comparing the degree to which the different sup + mutations depressed the growth rate on methionine supplemented medium. The dominant mutation depressed growth to the greatest extent and is, therefore, the most efficient suppressor. The least efficient suppressors did not depress growth at all. When growth was compared on minimal medium it was found that the more efficient the suppressor the less well it restored growth. The mutations in groups A and B depressed growth more than the tRNA mutations but affect some other component in translation because they are recessive and complement normally. It is suggested that they may act to alter tRNA modifying enzymes.  相似文献   

15.
Three mutants of Aspergillus nidulans, selected to have a block at an early stage of conidiation (asexual sporulation), exhibit similar pleiotropic phenotypes. Each of these mutants, termed preinduction mutants, also are blocked in sexual sporulation and secrete a set of phenolic metabolites at level much higher than wild type or mutants blocked at later stages of conidiation. Backcrosses of these mutants to wild type showed that the three phenotypes always cosegregated. Diploids containing the mutant alleles in all pairwise combinations were normal for all phenotypes, showing that the three mutations are nonallelic. This conclusion was confirmed by the finding that the mutations map at three unlinked or distantly linked loci. Ten revertants of the two least leaky preinduction mutants, selected for ability to conidiate, were found in each case to arise by a second-site suppressor mutation. All of the revertants still showed accumulation of some of the phenolic metabolites but differed from each other in certain components. Three of the revertants retained the block in sexual sporulation. In these cases the suppressor has thus uncoupled the block in asexual sporulation from the block in sexual sporulation. These results are understandable in terms of a model in which preinduction mutations and their suppressors affect steps in a single metabolic pathway whose intermediates include an effector specific for asexual sporulation and a second effector specific for sexual sporulation.  相似文献   

16.
Seo JA  Guan Y  Yu JH 《Genetics》2003,165(3):1083-1093
Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.  相似文献   

17.
18.
C Ng  C Buchanan  A Leung  C Ginther  T Leighton 《Biochimie》1991,73(7-8):1163-1170
Mutations in the Bacillus subtilis major RNA polymerase sigma factor gene (rpoD/crsA47) and a sensory receiver gene (spoOA/rvtA11) are potent intergenic suppressors of several stage 0 sporulation mutations (spoOB, OE, OF & OK). We show here that these suppressors also rescue temperature-sensitive sporulation phenotypes (Spots) caused by mutations in RNA polymerase, ribosomal protein, and protein synthesis elongation factor EF-G genes. The effects of the crsA and rvtA suppressors on RNA polymerase and ribosomal protein spots mutations are similar to those previously described for mutations in another intergenic suppressor gene rev. We have examined the effects of rvtA and crsA mutations on the expression of sporulation-associated membrane proteins, including flagellin and penicillin binding protein 5* (PBP 5*). Both suppressors restored sporulation and synthesis of PBP 5* in several spoO mutants. However, only rvtA restored flagellin synthesis in spoO suppressed backgrounds. The membrane protein phenotypes resulting from the presence of crsA or rvtA suppressors in spoO strains suggests that these suppressors function via distinct molecular mechanisms. The rvtA and crsA mutations are also able to block the ability of ethanol to induce spoO phenocopies at concentrations of ethanol which prevent sporulation in wild type cells. The effects of ethanol on sporulation-associated membrane protein synthesis in wild type and suppressor containing strains have been examined.  相似文献   

19.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号