首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lalucque H  Malagnac F  Brun S  Kicka S  Silar P 《Genetics》2012,191(2):419-433
The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.  相似文献   

2.
P. Silar  F. Koll    M. Rossignol 《Genetics》1997,145(3):697-705
The filamentous fungus Podospora anserina presents a degeneration syndrome called Senescence associated with mitochondrial DNA modifications. We show that mutations affecting the two different and interacting cytosolic ribosomal proteins (S7 and S19) systematically and specifically prevent the accumulation of senDNAα (a circular double-stranded DNA plasmid derived from the first intron of the mitochondrial cox1 gene or intron α) without abolishing Senescence nor affecting the accumulation of other usually observed mitochondrial DNA rearrangements. One of the mutant proteins is homologous to the Escherichia coli S4 and Saccharomyces cerevisiae S13 ribosomal proteins, known to be involved in accuracy control of cytosolic translation. The lack of accumulation of senDNAα seems to result from a nontrivial ribosomal alteration unrelated to accuracy control, indicating that S7 and S19 proteins have an additional function. The results strongly suggest that modified expression of nucleus-encoded proteins contributes to Senescence in P. anserina. These data do not fit well with some current models, which propose that intron α plays the role of the cytoplasmic and infectious Determinant of Senescence that was defined in early studies.  相似文献   

3.
Senescence of Podospora anserina is triggered by a cytoplasmic and infectious factor (the determinant of senescence) and is always correlated with mitochondrial DNA modifications, especially with the accumulation of small circular subgenomic DNA molecules, the senDNAs. Several observations have suggested that the senDNAs could be the cytoplasmic and infectious determinant. However, we show here (1) that senDNA molecules can be transferred to a young culture without the cotransmission of the determinant of senescence and (2) that the determinant of senescence does not segregate as a mitochondrial DNA mutation. Overall, our data strongly argue that amplification of senDNA molecules in the mitochondria is not an intrinsic property of these small DNA molecules. They question the nature of the actual determinant of senescence.  相似文献   

4.
The elevation of Hsp104 (heat shock protein) content under heat stress plays a key role in the development of thermotolerance in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress and in the stationary growth phase. The loss of mitochondrial DNA (petite mutation) was shown to inhibit the induction of Hsp104 synthesis under heat stress (39°C) and during the transition to the stationary growth phase. Also, the petite mutation suppressed the increase in activity of antioxidant enzymes in the stationary phase, which accompanied by decrease in thermotolerance. At the same time, mutation inhibited production of reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression of yeast nuclear genes upon upon entry into the stationary growth phase.  相似文献   

5.
6.
    
Summary Alterations in the physical characteristics of mitochondrial DNA accompanied increased spontaneous mutability to cytoplasmic respiratory-deficiency in yeast. Two systems were used to modify mutation rates, one physiological, the other genetic. Cells in log phase were shown to be more mutable than cells in stationary phase, and glucose-repressed cells were shown to be more mutable than unrepressed cells. A nuclear gene which acts as a mitochondrial mutator was found to increase spontaneous mutation rate by a factor of ten. An increase in endogenous formation of G+C-rich fragments of mt-DNA accompanied a physiological state conducive to higher mutability, and it is proposed that increasedin vivo digestion of A+T-rich regions is involved in these alterations. Greater nuclease(s) activity accompanied the presence of the mutator gene, and it is proposed that this gene is concerned with the regulation of nuclease activity or with repair mechanisms. N.R.C.C. Publication No. 15211  相似文献   

7.
The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) and chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of survival of UV-treated exponential phase cells, but not in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the ϱ+ genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in statonary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) processes for the ϱ induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis.When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressedor depressed state of the mitochondria.  相似文献   

8.
The G2 index of the yeast Cryptococcus neoformans determined by laser scanning cytometer was 2-3 times higher than the budding index during transition to the stationary phase of the culture, indicating that buds emerged in the G2 phase of the cell cycle. To clarify whether buds also emerge in G2 during exponential growth of the culture, DNA content for each cell was measured with a fluorescence microscope equipped with a photomultiplier. The DNA content of cells having tiny buds varied rather widely, depending on growth phases and strains used. Typically, buds of C. neoformans emerged soon after initiation of DNA synthesis in the early exponential phase. However, bud emergence was delayed to G2 during transition to the stationary phase, and in the early stationary phase budding scarcely occurred, although roughly half of the cells completed DNA synthesis. Thus, the timing of budding in C. neoformans was actually shifted to later cell cycle points with progression of the growth phase of the culture.  相似文献   

9.
Summary In Podospora anserina senescence leading to cellular death occurs regularly after prolonged vegetative propagation. However, the life span of this ascomycete may be extended by various means:I. Mutations in at least 8 morphogenetic genes belonging to 4 linkage groups postpone drastically or even prevent in certain pairwise combinations (e.g. i viv) the onset of senescence. 2. Inhibitors of mt DNA and of mitochondrial protein synthesis show a life prolonging effect when added in low concentrations to the growth medium. 3. A similar effect was found when mycelia were fed exclusively on non repressive carbon sources.Whereas the anti-aging effect of specific mutated genes is rather permanent, the life prolonging action of the inhibitors and carbon sources is restricted and temporary. These substances have no long lasting effect, since after their removal from the medium aging proceeds.Physiological experiments have further shown the existence of three phases in the life span of Podospora anserina. During the juvenile phase aging is prevented by all of these compounds; during the presenescent phase aging is prevented by inhibitors of mt DNA only, and during the senescent phase aging is irreversible.Senescence may be induced in juvenile protoplasts by DNA extracted from senescent mycelia. This, together with the well known fact that senescence is extrachromosomically inherited, points to extrachromosomal DNA as the causative agent of senescence. This kind of DNA may be connected with or perhaps located in the mitochondria.Collectively, the data are consistent in showing that the syndrome of senescence in Podospora anserina is controlled by a chromosomal-extrachromosomal is controlled by a chromosomal-extrachromosomal interaction. In this system, extrachromosomal DNA, perhaps a mt DNA, is identical with the infectious principle initiating the decay of the cell, and nuclear genes supervise its expression.  相似文献   

10.
In vivo synthesis of the mitochondrial elongation factors T and G in the yeast Saccharomyces fragilis can be repressed. Enzymatic activity assays and immunochemical titration methods reveal that cells grown in the presence of 8% glucose or in the absence of oxygen contain relatively lower amounts of mitochondrial elongation factors than cells grown in the presence of lactate. In contrast, in vivo production of the cytoplasmic elongation factors 1 and 2 does not respond to such a change of extracellular conditions. The rate of growth does not affect the level of the mitochondrial elongation factors. Production of both enzymes is almost constant during logarithmic growth, but decreases when the stationary phase is reached. Chloramphenicol, an inhibitor of mitochondrial protein synthesis, does not block but, rather, seems to enhance the in vivo synthesis of mitochondrial T or G.  相似文献   

11.
Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Chlorella protothecoides cells grown in shake flasks. Changes in the right angle light scatter (RALS) and forward angle light scatter (FALS) were detected during the microalgal growth, which were attributed to the different microalgal cell cycle stages. The proportion of cells not stained with PI (cells with intact cytoplasmic membrane) was high (> 90%) during the microalgal growth, even in the latter stationary phase, suggesting that the microalgal cells built-up storage materials which allowed them to survive under nutrient starvation, maintaining their cytoplasmic membranes intact. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional lipid extraction method was found for this microalga, making this method a suitable and quick technique for the screening of microalgal strains for lipid production, optimization of biofuel production bioprocesses, and scale-up studies. The highest oil content (∼28% w/w dry cell weight, estimated by flow cytometry) was observed in the latter stationary phase. In addition, C. protothecoides oil also depicted the adequate fatty acid methyl ester composition for biodiesel purposes at this growth phase, suggesting that the microalgal oil produced during the latter stationary phase could be an adequate substitute for diesel fuel. Medium growth optimization for enhancement of microalgal oil production is now in progress, using the multi-parameter approach.  相似文献   

12.
The expression of some Saccharomyces cerevisiae genes is induced as cells enter stationary phase. Their mRNAs are translated during a period in the growth cycle when the translational apparatus is relatively inert, thereby raising the possibility that these mRNAs compete effectively for a limiting pool of translation factors. To test this idea, the translation of mRNAs carrying different 5′-leaders was compared during exponential growth and after entry into stationary phase upon glucose starvation. Closely related sets of lacZ mRNAs, carrying 5′-leaders from the PYK1, PGK1, RpL3, Rp29, HSP12, HSP26 or THI4 mRNAs, were studied. These mRNAs displayed differing translational efficiencies during exponential growth, but their relative translatabilities were not significantly affected by entry into stationary phase, indicating that they compete just as effectively under these conditions. Polysome analysis revealed that the wild-type PYK1, ACT1 and HSP26 mRNAs are all translated efficiently during stationary phase, when the translational apparatus is relatively inert. Also, significant levels of the translation initiation factors eIF-2α, eIF-4E and eIF-4A were maintained during the growth cycle. These data are consistent with the idea that, while translational activity decreases dramatically during entry into stationary phase, yeast cells maintain excess translational capacity under these conditions. Received: 31 March 1998 / Accepted: 4 May 1998  相似文献   

13.
Phosphatidylglycerolphosphate synthase (PGPS; CDP-diacylglycerol glycerol 3-phosphate 3-phosphatidyltransferase; EC 2.7.8.5) catalyzes the first step in the synthesis of cardiolipin, an acidic phospholipid found in the mitochondrial inner membrane. In the yeast Saccharomyces cerevisiae, PGPS expression is coordinately regulated with general phospholipid synthesis and is repressed when cells are grown in the presence of the phospholipid precursor inositol (M. L. Greenberg, S. Hubbell, and C. Lam, Mol. Cell. Biol. 8:4773-4779, 1988). In this study, we examined the regulation of PGPS in growth conditions affecting mitochondrial development (carbon source, growth stage, and oxygen availability) and in strains with genetic lesions affecting mitochondrial function. PGPS derepressed two- to threefold when cells were grown in a nonfermentable carbon source (glycerol-ethanol), and this derepression was independent of the presence of inositol. PGPS derepressed two- to fourfold as cells entered the stationary phase of growth. Stationary-phase derepression occurred in both glucose- and glycerol-ethanol-grown cells and was slightly greater in cells grown in the presence of inositol and choline. PGPS expression in mitochondria was not affected when cells were grown in the absence of oxygen. In mutants lacking mitochondrial DNA [( rho0] mutants), PGPS activity was 30 to 70% less than in isogenic [rho+] strains. PGPS activity in [rho0] strains was subject to inositol-mediated repression. PGPS activity in [rho0] cell extracts was derepressed twofold as the [rho0] cells entered the stationary phase of growth. No growth phase derepression was observed in mitochondrial extracts of the [rho0] cells. Relative cardiolipin content increased in glycerol-ethanol-grown cells but was not affected by growth stage or by growth in the presence of the phospholipid precursors inositol and choline. These results demonstrate that (i) PGPS expression is regulated by factors affecting mitochondrial development; (ii) regulation of PGPS by these factors is independent of cross-pathway control; and (iii) PGPS expression is never fully repressed, even during anaerobic growth.  相似文献   

14.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

15.
In Chlamydomonas reinhardtii P. A. Dangeard, mitochondrial morphology has been observed during asexual cell division cycle, gamete and zygote formation, zygote maturation, and meiotic stages. However, the chronological transition of mitochondrial morphology after the stationary phase of vegetative growth, defined as the poststationary phase, remains unknown. Here, we examined the mitochondrial morphology in cells cultured for 4 months on agar plates to study mitochondrial dynamics in the poststationary phase. Fluorescence microscopy showed that the intricate thread‐like structure of mitochondria gradually changed into a granular structure via fragmentation after the stationary phase in cultures of about 1 week of age. The number of mitochondrial nucleoids decreased from about 30 per cell at 1 week to about five per cell after 4 months of culture. The mitochondrial oxygen consumption decreased exponentially, but the mitochondria retained their membrane potential. The total quantity of mitochondrial DNA (mtDNA) of cells at 4 months decreased to 20% of that at 1 week. However, the mitochondrial genomic DNA length was unchanged, as intermediate lengths were not detected. In cells in which the total mtDNA amount was reduced artificially to 16% after treatment with 5‐fluoro‐2‐deoxyuridine (FdUrd) for 1 week, the mitochondria remained as thread‐like structures. The oxygen consumption rate of these cells corresponded to that of untreated cells at 1 week of culture. This suggests that a decrease in mtDNA does not directly induce the fragmentation of mitochondria. The results suggest that during the late poststationary phase, mitochondria converge to a minimum unit of a granular structure with a mitochondrial nucleoid.  相似文献   

16.
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.  相似文献   

17.
SYNOPSIS Motile cells and cysts of Polytomella agilis, obtained over the entire growth cycle, were examined by electron microscopy. In typical late log phase cells there is a concentric arrangement of the internal organelles around the centrally located nucleus. Lying just beneath the plasma membrane is a peripheral band of elongate mitochondria. Numerous well defined Golgi bodies are also distributed around the nucleus. Vesicles associated with the Golgi body increase in size with distance from the secretory edges of the organelle. Cytoplasmic membranes with associated ribosomes are found between the mitochondrial and Golgi regions. A layer of slender membrane-limited structures is located near the mitochondrial layer. These organelles, which resemble proplastids, become highly branched during late log and early stationary phase, reaching maximum development in late stationary and early pre-cyst stages. Large storage granules of varying density are found within the cell. The PAS-positive granules have been isolated and shown to contain starch. There is an increase in the amount of this storage material as the cells enter the stationary phase. The remainder of the cytoplasmic matrix is finely granular and contains numerous free ribosomes except in the region of the anterior papilla. Four flagella arise from basal bodies at the anterior end of the cell. The cyst is characterized by a thick multi-layered cell wall whose electron density obscures the limiting plasma membrane. Large storage granules are located close to and often in contact with the periphery of the cell, suggesting their involvement in the process of cell wall deposition. Altho mitochondria can still be seen in the mature cyst, other cytoplasmic organelles often appear atypical. The mature cyst has an irregular profile possibly due to shrinkage from dehydration.  相似文献   

18.
19.
Flow cytometry provides a rapid, sensitive and accurate analytical means to monitor hybridoma cell cultures. The use of flow cytometry has enabled us to study the changes in DNA, RNA, protein, IgG, mitochondrial activity and cell size that take place during the growth cycle of batch culture. The temporal changes in the levels of these analytes and their heterogeneity have been related to the growth/death kinetics. The maximum proportion of S-cells was reached early in the growth phase while a population of low fluorescence cells with lower polidy than G1, dead cells and fragmented nuclei emerged during the death phase. Supplementation with amino acids during the exponential phase prolonged the growth cycle by enhancing cell proliferation. The fraction of S/G2 cells was much reduced by a reduction in serum concentration but was maintained during the prolonged non-proliferating "stationary" phase. The magnitude of Rhodamine 123 staining showed a consistent and general decrease during late exponential and decline phases. This trend was accompanied by an increase in the fraction of the Propidium Iodide-stained population which reflected the deteriorating metabolic and membrane integrity. Decrease in mean fluorescence intensity for DNA, RNA, protein and intracellular IgG was noted at the decline phase. Intracellular immunofluorescence was a more reliable indicator of antibody productivity than surface immunofluorescence.  相似文献   

20.
During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号