首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toad urinary bladder epithelial cells were incubated in Na Ringer's with the serosal surface of the epithelium clamped at either +50 mV, O mV (short-circuited) or –50 mV with respect to the mucosal surface. Following incubation, portions of tissue were coated with an external albumin standard and rapidly frozen. Cryosections were freeze-dried and cell composition determined by x-ray microanalysis. Cell water and ion contents were unaffected when tissues were short-circuited rather than clamped close to their open-circuit potential difference (+50 mV). Incubation with vasopressin at +50 mV, and under short-circuit conditions, caused Na uptake without cell swelling or gain in Cl. Clamping at –50 mV resulted in uptake of water and ions, with considerable variation from cell to cell. These variations in cell composition were exacerbated by vasopressin. The greater the increase in water content, the greater the rise in cell Cl. However, there was no consistent pattern to the associated changes in cation contents. Most cells gained some Na. In some cells, this gain was accompanied by an increase in K. In others, the gain of Na was predominant and cell K content actually fell. At –50 mV with ouabain, many of the cells also gained water. As was found in our earlier study with ouabain under short circuit conditions (Bowler et al., 1991), there was considerable variation in the extent of the Na gain and K loss; some cells were largely depleted of K while in others the K content remained relatively normal. These results indicate differences between granular cells in the availabilities in the plasma membranes of ion pathways, either as a consequence of differences in the numbers of such pathways or in their control.This work was supported by a grant from the Health Research Council of New Zealand. Purchase of the equipment was made possible through grants from the Medical Research Council of New Zealand, the Medical Distribution Committee of the Lottery Board, the University Grants Committee, the Telford Trust, the New Zealand Neurological Foundation and the National Heart Foundation. We are grateful for the excellent technical assistance of Ms. S. Zellhuber-McMillan.  相似文献   

2.
3.
Summary The patch-clamp technique for the recording of single-channel currents was used to investigate the activity of ion channels in the intact epithelium of the toad urinary bladder. High resistance seals were obtained from the apical membrane of tightly stretched tissue. Single-channel recordings revealed the activity of a variety of ion channels that could be classified in 4 groups according to their mean ion conductances, ranging from 5 to 59 pS. In particular, we observed highly selective, amiloridesensitive Na channels with a mean conductance of 4.8 pS, channels with a similar conductance that were not Na-selective and channels with mean conductance values of 17–58 pS that were mostly seen after stimulation of the tissue with vasopressin or cAMP. When inside-out patches from the apical membrane were exposed to 110mm fluoride, large conductances (86–490 pS) appeared.  相似文献   

4.
Summary Coincident with an increase in the water permeability of toad urinary bladder induced by serosal hypertonicity, a transformation of the ridge-like surface structures of the granular cells into individual microvillous structures occurs. This study was initiated to establish whether the transformation is mediated by the cytoskeletal network and, thus, can be prevented by disruption of microtubulemicrofilament function with colchicine or cytochalasin B (CB). Scanning electron microscopy revealed the characteristic branching ridges on granular cells of control bladder incubated with colchicine or CB. In contrast, transformation of ridges to discrete microvilli was observed in experimental bladders exposed to serosal hypertonicity alone or in combination with either colchicine or CB. These results suggest that the mechanism underlying hypertonicity-induced surface changes which are associated with increased water permeability does not involve either microtubules or microfilaments.  相似文献   

5.
Relationships between short-circuit current (I sc), cell Cl and the mechanism(s) of Cl accumulation in toad bladder epithelial cells were investigated. In serosal Cl-free gluconate Ringer, 80% of the cell Cl (measured by x-ray microanalysis) was lost over 30–60 min with an associated decrease in cell water content. Concomitantly, I sc fell to 20% of its initial value within 10 min but then recovered to 45% of its initial value despite continued Cl loss. With the reintroduction of Cl, cell Cl and I sc both recovered within 10 min. Serosal SITS (4 acetamido-4-isothiocyano-stilbene-2,2-disulfonate; 0.5 mm) plus bumetanide (0.1 mm), did not prevent the fall in I sc or the loss of cell Cl in gluconate medium, although they did inhibit subsequent recovery of I sc in this medium. They also prevented the recovery of I sc in Cl medium but not the reaccumulation of Cl by the cells. Although SITS and bumetanide did not prevent the loss or recovery of Cl, they modified the pattern of the ion changes. In their absence, changes in cellular Cl were twice that of the changes in measured cellular cations implicating basolateral Cl/HCO3 exchange in Cl movement. With SITS plus bumetanide present, changes of similar magnitude in Cl were associated with equivalent changes in cation, consistent with the inhibition of Cl/ HCO3 exchange.This work was supported by a grant from the Medical Research Council of New Zealand. Purchase of equipment was made possible through grants from the Medical Research Council of New Zealand, the Medical Distribution Committee of the Lottery Board, the University Grants Committee, the Telford Trust, the New Zealand Neurological Foundation and the National Heart Foundation. The expert technical assistance of S. Zellhuber-McMillan is gratefully acknowledged.  相似文献   

6.
Summary Quantitative electron microprobe analysis was employed to compare the effects of aldosterone and ADH on the intracellular electrolyte concentrations in the toad urinary bladder epithelium. The measurements were performed on thin freeze-dried cryosections utilizing energy dispersive x-ray microanalysis. After aldosterone, a statistically significant increase in the intracellular Na concentration was detectable in 8 out of 9 experiments. The mean Na concentration of granular cells increased from 8.9±1.3 to 13.2±2.2 mmol/kg wet wt. A significantly larger Na increase was observed after an equivalent stimulation of transepithelial Na transport by ADH. On average, the Na concentration in granular cells increased from 12.0±2.3 to 31.4±9.3 mmol/kg wet wt (5 experiments). We conclude from these results that aldosterone, in addition to its stimulatory effect on the apical Na influx, also exerts a stimulatory effect on the Na pump. Based on a significant reduction in the Cl concentration of granular cells, we discuss the possibility that the stimulation of the pump is mediated by an aldosterone-induced alkalinization.Similar though less pronounced concentration changes were observed in basal cells, suggesting that this cell type also participates in transepithelial Na transport. Measurements in mitochondria-rich cells provided no consistent results.  相似文献   

7.
Recent data suggest that changes in ionic content, primarily potassium, play a pivotal role in the progression of apoptosis. However, the changes in total element content, i.e., sodium (Na), magnesium (Mg), phosphorous (P), chlorine (Cl), potassium (K), and calcium (Ca), during apoptosis have not been evaluated. Electron probe X-ray microanalysis (EPXMA) was used to measure total element content in U937 cells before and after the induction of apoptosis. As an experimental model we used U937 cells irradiated with ultraviolet (UV) light. Apoptosis was evaluated with phase-contrast microscopy, with scanning and transmission electron microscopy, and with the fluorescent dye bisbenzimide (Hoechst 33342). Plasma membrane permeability as a measure of cell death was determined by trypan blue dye exclusion. To investigate element content with EPXMA, cells were cryoprepared, i.e., cryofixed and freeze-dried, and analyzed as whole cells using a scanning electron microscope. We found that the UV irradiation induced rapid (within 2 h) morphological changes associated with apoptosis, such as plasma membrane blebbing, condensation of the chromatin, and the formation of membrane-bound apoptotic bodies. At this time, 95% of the apoptotic cells excluded trypan blue dye. EPXMA results demonstrated that UV light-irradiated apoptotic cells (cells with membrane-bound apoptotic bodies) had a lower Cl content (P < 0.001) and K content (P < 0.001) and a higher Na content (P < 0.001) in comparison with nonirradiated control cells. Also, P and Ca content was higher in apoptotic cells than in control cells, but this difference did not reach statistical significance. No differences were found in Mg. These data indicated that morphological changes characteristic of apoptotic cell death are related with significant changes in sodium, chlorine, and potassium content. In addition, we demonstrated that these changes in elemental composition were not associated with loss of cell membrane integrity.  相似文献   

8.
Summary The present study investigated whether the hydrophobic properties (wettability) of the luminal surface of the toad urinary bladder might play a role in modulating water transport across this epithelium. In the absence of vasopressin (ADH), water transport across the tissue was low, while luminal surface hydrophobicity (water contact angle) was relatively high. Following stimulation by ADH, water transport increased and surface hydrophobicity decreased. The addition of indomethacin to inhibit ADH-induced prostaglandin synthesis did not reduce these actions of ADH. In an attempt to alter water transport in this tissue, a liposomal suspension of surface-active phospholipids was administered to the luminal surface. This addition had no detectable influence on the low basal rates of water transport, but blocked the ADH-induced stimulation of water transport. We suggest that surface-active phospholipids on the toad bladder luminal membrane may contribute to the hydrophobic characteristics of this tissue. ADH may act to decrease surface hydrophobicity, facilitating the movement of water molecules across an otherwise impermeable epithelium. This surface alteration may be associated with the appearance of water channels in the apical membrane.  相似文献   

9.
Summary We recently described a method by which the resistance to water flow of the luminal membrane of ADH-stimulated toad bladder can be quantitatively distinguished from that of barriers lying in series with it. This method requires estimates of both total bladder water permeability (assessed by transbladder osmotic water flow at constant gradient) and luminal membrane water permeability (assessed by quantitation of the frequency of ADH-induced luminal membrane particle aggregates). In the present study we examined the effect of bladder distension on transepithelial osmotic water flow before and during maximal ADH stimulation. Base-line water flow was unaffected by bladder distension, but hormonally stimulated flow increased systematically as bladders became more distended. Distension had no effect on the frequency of ADH-induced intramembranous particle aggregates. By comparing the relationships between aggregate frequency and hormonally induced water permeability in distended and undistended bladders, we found that distension appeared to enhance ADH-stimulated water flow by decreasing the resistance of the series permeability barrier while the apparent water permeability associated with each single luminal membrane aggregate was unaffected. In that bladder distension causes tissue thinning, the series resistance limiting ADH-stimulated water flow appears to be accounted for by deformable barriers within the bladder tissue itself, probably unstirred layers of water.  相似文献   

10.
Summary The use of an Ussing chamber with well-defined mixing characteristics coupled to a mass spectrometer permits the concurrent evaluation of transepithelial current and oxidative metabolism with improved temporal resolution. The time-course of the amiloride-sensitive currentI a and the rate of suprabasal CO2 productionJ CO2 sb were observed in 10 toad urinary bladders at short-circuit and after clamping at 100 mV, serosa positive. Following perturbation of (0100mV),I a declined sharply within 1/2 min, remained near constant 15 min, and then increased slightly.J CO2 sb declined more gradually, remained near constant at 4–7 min, and then declined further. Detailed analysis revealed an early quasi-steady state with near constancy ofJ CO2 sb starting at 2.9±1.1 (sd) min and lasting 4.7 ±1.8 (sd) min, followed by relaxation to a later steady state at about 15 min. During the early quasi-steady state,I a was also nearly constant. Considering that in steady statesI a/FJ Na a , the rate of transepithelial active Na transport, during the early quasi-steady state mean values ±se ofJ Na a ,J CO2 sb and (J Na a /J CO2 sb ) were, respectively, 29.9±1.7%, 59.4 ±3.2%, and 56.4±5.7% of values at short-circuit. Corresponding values during the late steady state were 41.4±6.0%, 38.2±6.1%, and 111.3±8.6%. Thus the flow ratioJ Na a /J CO2 sb was depressed significantly during the early quasi-steady state, but returned later to the original value. The results of measurements ofI a andJ CO2 sb in three hemibladders were qualitatively similar. In terms of a phenomenological black-box treatment the findings are consistent with earlier studies indicating incomplete coupling between transport and metabolism. Further studies will be required to clarify the molecular basis for these observations.  相似文献   

11.
Summary Several new amiloride analogues and two reported photoaffinity analogues were tested for irreversible inhibition of short-circuit current,I sc, in toad bladder. Bromoamiloride, a photoaffinity analogue, induced 40% irreversible inhibition at 500 m after irradiation with ultraviolet light 320 nm. Iodoamiloride caused no irreversible inhibition. Of the new analogues tested, only 3,5-diamino-6-chloro-N-[(phenylamino) aminomethylene] pyrazinecarboxamide,phenamil, irreversibly inhibitedI sc at concentrations of 0.05 to 5 m when added to the mucosal solution. Irreversible inhibition ofI sc by phenamil may be attributed to specific blockage of the mucosal sodium channels, which depended on: 1) time of exposure; 2) mucosal pH: 3) mucosal sodium concentration. For example, 5 m phenamil irreversibly inhibitedI sc by 38% in 103mm Na at pH 8.6 and nearly 75% in 30mm Na at pH 6.4 after a 40-min exposure. Irreversible inhibition occurred in two phases with time constants of 10 min and approximately 140 min. Due to its irreversible nature, phenamil may be used to measure channel density.  相似文献   

12.
Summary The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H>Li>NaK. K, permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.  相似文献   

13.
14.
Summary Intracellular concentrations of Na, K, Cl ([Na], [K] and [Cl], respectively) and other elements were determined in isolated monkey eccrine sweat secretory coil cells using quantitative electron probe X-ray microanalysis of freeze dried cryosections. The validity of the methodology was partially supported by qualitative agreement of the X-ray microanalysis data with those obtained by micro-titration with a helium glow spectrophotometer. [Na], [K] and [Cl] of the cytoplasm were the same as those in the nucleus in both clear and dark cells. [Na], [K], and [Cl] of the clear cells were also the same as those of the dark cells at rest and after stimulation with methacholine (MCh), suggesting that these two cell types behave like a functional syncytium. MCh stimulation induced a pharmacologically specific, dose-dependent decrease in [K] and [Cl] (as much as 65%), and a 3.7-fold increase in [Na]. In myoepithelial cells, a similar change in [Na] and [K] was noted after MCh stimulation although the decrease in [Cl] was only 20%. The MCh-induced change in [Na], [K] and [Cl] was almost completely inhibited by removal of Ca2+ from the medium. 10–4 m bumetanide inhibited the MCh-induced increase in [Na], reduced the decrease in [K] by about 50%, but slightly augmented the MCh-induced decrease in [Cl]. 10–4 m ouabain increased [Na] and decreased [K] as did MCh; however, unlike MCh, ouabain increased [Cl] by 56% after 30 min of incubation. Thus the data may be best interpreted to indicate that Ca-dependent K efflux and (perhaps also Ca-dependent) Cl efflux are the predominat initial ionic movement in muscarinic cholinergic stimulation of the eccrine sweat secretory coils and that the ouabain-sensitive Na pump plays an important role in maintenance of intracellular ions and sweat secretion.  相似文献   

15.
The Journal of Membrane Biology - Transepithelial sodium transport was virtually abolished when toad urinary hemibladders, mounted in chambers and short-circuited, were exposed on their serosal...  相似文献   

16.
Summary Phenamil, an analog of amiloride, has previously been shown to bind specifically to sodium channels in toad bladder (J.L. Garvin et al.,J. Membrane Biol. 87:45–54, 1985). In this paper,3H-phenamil was used to measure sodium channel density in both isolated epithelial cells and intact bladders. From the specific binding to intact bladders, a channel density of 455±102 channels/m2 was calculated. No correlation between specific binding and the magnitude of irreversible inhibition of shortcircuit current was found. Pretreatment of intact bladders with 1 mg/ml trypsin reduced specific binding to isolated cells by 82±5%. In isolated cells, neither aldosterone nor vasopressin had any significant effect on specific phenamil binding. It is inferred that phenamil binds to both open and closed channels which may be either in the mucosal membrane or in the submembrane space. Finally, and rather surprisingly, we found that3H-phenamil binds irreversibly to the basolateral membrane at concentrations as low as 4×10–7 m. Therefore, care must be used in interpreting binding studies with amiloride or its analog at such concentrations.  相似文献   

17.
Summary— Digestive mucus of sea-water adapted eels has been observed and analyzed by the scanning electron microscope (SEM) after rapid freezing at liquid nitrogen temperature followed by freeze-drying. No chemical procedures were used in this technique. This allowed the maintenance of the mucous coating. Preliminary X-ray microanalysis carried out on freeze-fractured and freeze-dried samples of the oesophagus showed a decrease of K+ and an increase of Ca2+ and Cl? from the basal part of the mucous cell towards its the apical part. This technique has proven to be satisfactory for it prevents translocation and loss of diffusible elements in situ and allows X-ray microanalysis in the SEM.  相似文献   

18.
Summary Aldosterone increases transepithelial Na+ transport in the urinary bladder ofBufo marinus. The response is characterized by 3 distinct phases: 1) a lag period of about 60 min, ii) an initial phase (early response) of about 2 hr during which Na+ transport increases rapidly and transepithelial electrical resistance falls, and iii) a late phase (late response) of about 4 to 6 hr during which Na+ transport still increases significantly but with very little change in resistance. Triiodothyronine (T3, 6nm) added either 2 or 18 hr before aldosterone selectively antagonizes the late response. T3 per se (up to 6nm) has no effect on base-line Na+ transport. The antagonist activity of T3 is only apparent after a latent period of about 6 to 8 hr. It is not rapidly reversible after a 4-hr washout of the hormone. The effects appear to be selective for thyromimetic drugs since reverse T3 (rT3) is inactive and isopropyldiiodothyronine (isoT2) is more active than T3. The relative activity of these analogs corresponds to their relative affinity for T3 nuclear binding sites which we have previously described. Our data suggest that T3 might control the expression of aldosterone by regulating gene expression, e.g. by the induction of specific proteins, which in turn will inhibit the late mineralocorticoid response, without interaction with the early response.  相似文献   

19.
Summary Sodium-calcium exchange has been suggested to play a pivotal role in the regulation of cytosolic free calcium (Ca f ) by epithelial cells. Using isolated epithelial cells from the toad urinary bladder, Ca f has been measured using the intracellular Casensitive fluorescent dyes Fura 2 and Quin. 2. Dye loading did not alter cell viability as assessed by measurements of ATP and ADP content or cell oxygen consumption. When basal Ca f was examined over a wide range of cell dye content (from 0.04 to 180 nmol dye/mg protein) an inverse relationship was observed. At low dye content, Ca f was 300–380 nM and, as dye content was increased, Ca f progressively fell to 60 nM. Using low dye content cells, in which minimal alteration in Ca steady state would be expected, the role for plasma membrane Na–Ca exchange was examined using either medium sodium substitution or ouabain. While medium sodium substitution increased Ca f , prolonged treatment with ouabain had no effect on Ca f despite a clear increase in cell sodium content. The lack of effect of ouabain suggests that Na–Ca exchange-mediated Ca efflux plays a minimal role in the regulation of basal Ca f . However, exchange-mediated Ca efflux may play a role in Ca f regulation when cytosolic calcium is elevated.  相似文献   

20.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号