首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

2.
A star polymer composed of amphiphilic block copolymer arms has been synthesized and characterized. The core of the star polymer is polyamidoamine (PAMAM) dendrimer, the inner block in the arm is lipophilic poly(epsilon-caprolactone) (PCL), and the outer block in the arm is hydrophilic poly(ethylene glycol) (PEG). The star-PCL polymer was synthesized first by ring-opening polymerization of epsilon-caprolactone with a PAMAM-OH dendrimer as initiator. The PEG polymer was then attached to the PCL terminus by an ester-forming reaction. Characterization with SEC, (1)H NMR, FTIR, TGA, and DSC confirmed the star structure of the polymers. The micelle formation of the star copolymer (star-PCL-PEG) was studied by fluorescence spectroscopy. Hydrophobic dyes and drugs can be encapsulated in the micelles. A loading capacity of up to 22% (w/w) was achieved with etoposide, a hydrophobic anticancer drug. A cytotoxicity assay demonstrated that the star-PCL-PEG copolymer is nontoxic in cell culture. This type of block copolymer can be used as a drug delivery carrier.  相似文献   

3.
A series of novel amphiphilic macromolecules composed of alkyl chains as the hydrophobic block and poly(ethylene glycol) as the hydrophilic block were designed to inhibit highly oxidized low density lipoprotein (hoxLDL) uptake by synthesizing macromolecules with negatively charged moieties (ie, carboxylic acids) located in the two different blocks. The macromolecules have molecular weights around 5,500 g/mol, form micelles in aqueous solution with an average size of 20-35 nm, and display critical micelle concentration values as low as 10(-7) M. Their charge densities and hydrodynamic size in physiological buffer solutions correlated with the hydrophobic/ hydrophilic block location and quantity of the carboxylate groups. Generally, carboxylate groups located in the hydrophobic block destabilize micelle formation more than carboxylate groups in the hydrophilic block. Although all amphiphilic macromolecules inhibited unregulated uptake of hoxLDL by macrophages, inhibition efficiency was influenced by the quantity and location of the negatively charged-carboxylate on the macromolecules. Notably, negative charge is not the sole factor in reducing hoxLDL uptake. The combination of smaller size, micellar stability and charge density is critical for inhibiting hoxLDL uptake by macrophages.  相似文献   

4.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

5.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked micelles (nanoparticles) (SCNs). The amphiphilic brush copolymers consisted of hydrophobic poly(epsilon-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) or poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) chains were synthesized by macromonomer copolymerization method and used to demonstrate this concept. The resulting SCNs were about 100 times more stable than micelles from corresponding amphiphilic block copolymers. The size and surface properties of the SCNs could be easily tailored by the copolymer's compositions.  相似文献   

6.
Cross-linkable di- and triblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxyl poly(ethylene glycol) (MPEG) were synthesized. These amphiphilic copolymers self-assembled into nanoscale micelles capable of encapsulating hydrophobic paclitaxel in their hydrophobic cores in aqueous solutions. To further enhance their thermodynamic stability, the micelles were cross-linked by radical polymerization of the double bonds introduced into the PCL blocks. Reaction conditions were found to significantly affect both the cross-linking efficiency and the micelle size. The encapsulation of paclitaxel into the micelles was confirmed by the proton nuclear magnetic resonance (1H NMR) spectroscopy. Encouragingly, paclitaxel-loading efficiency of micelles was enhanced significantly upon micelle core-cross-linking. Both the micelle size and the drug loading efficiency increased markedly with increasing the PCL block lengths, no matter if the micelles were core-cross-linked or not. However, paclitaxel-loading did not obviously affect the micelle size or size distribution. The cross-linked micelles exhibited a significantly enhanced thermodynamic stability against dilution with aqueous solvents. The efficient cellular uptake of paclitaxel loaded in the nanomicelles was demonstrated by confocal laser scanning microscopy (CLSM) imaging. This new biodegradable nanoscale carrier system merits further investigations for parenteral drug delivery.  相似文献   

7.
Li G  Liu J  Pang Y  Wang R  Mao L  Yan D  Zhu X  Sun J 《Biomacromolecules》2011,12(6):2016-2026
The hydrophobic block of polymeric micelles formed by amphiphilic copolymers has no direct therapeutical effect, and the metabolites of these hydrophobic segments might lead to some unexpected side effects. Here the hydrophobic core of polymeric micelles is replaced by highly water-insoluble drugs themselves, forming a new micellar drug delivery system. By grafting hydrophobic drugs of paclitaxel (PTX) onto the surface of hydrophilic hyperbranched poly(ether-ester) (HPEE), we constructed an amphiphilic copolymer (HPEE-PTX). HPEE-PTX could self-assemble into micellar nanoparticles in aqueous solution with tunable drug contents from 4.1 to 10.7%. Moreover, the hydrolysis of HPEE-PTX in serum resulted in the cumulative release of PTX. In vivo evaluation indicated that the dosage toleration of PTX in mice had been improved greatly and HPEE-PTX micellar nanoparticles could be used as an efficient prodrug with satisfactory therapeutical effect. We believe that most of the lipophilic drugs could improve their characters through this strategy.  相似文献   

8.
Micelles of a model amphiphilic block copolymer, poly(hydroxyethyl acrylate)-block-poly(n-butyl acrylate) (PHEA-b-PBA), synthesized via the RAFT polymerization were cross-linked by copolymerization of a degradable cross-linker from the living RAFT-end groups of PBA chains, yielding a cross-linked core without affecting significantly the original micelle size. The cross-linker incorporation into the micelles was evidenced via physicochemical analysis of the copolymer unimers formed upon acidic cleavage of the cross-linked micelles. High doxorubicin loading capacities (60 wt %) were obtained. Hydrolysis of less than half of the cross-links in the core was found to be sufficient to release doxorubicin faster at acidic pH compared to neutral pH. The system represents the first example of core-cross-linked micelles that can be destabilized (potentially both above and below CMC) by the pH-dependent cleavage of the cross-links and the subsequent polarity change in the core to enable the release of hydrophobic drugs entrapped inside the micelle.  相似文献   

9.
Zhang J  Wang LQ  Wang H  Tu K 《Biomacromolecules》2006,7(9):2492-2500
This study focuses on the aggregation behavior of the biodegradable amphiphilic block copolymers based on methoxy poly(ethylene glycol) (mPEG) as a hydrophilic block and either crystalline poly(caprolactone-b-l-lactide) (P(CL-LLA)) or amorphous poly(caprolactone-b-D,L-lactide) (P(CL-DLLA)) as a hydrophobic block. These block copolymers have a strong tendency to form micelles in aqueous medium, with very low critical micelle concentrations (CMCs). The CMC of P(CL-LLA)-b-mPEG is higher than that of P(CL-DLLA)-b-mPEG when the mPEG block has the same molecular weight. Furthermore, the partition equilibrium coefficient (K(v)) of pyrene in the micellar solution of P(CL-LLA)-b-mPEG copolymer was lower than that of P(CL-DLLA)-b-mPEG copolymer when the mPEG block was the same length. These differences were believed to be related to the physical state of the core-forming blocks, i.e., the crystalline P(CL-LLA) block and the amorphous P(CL-DLLA) block. The TEM images showed that micelles formed by P(CL-LLA)-b-mPEG assembled in a cylindrical morphology, whereas those formed by P(CL-DLLA)-b-mPEG took a classical spherical shape. In addition, with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) analyses, it is believed that the crystallization tendency of the core-forming blocks is the main factor governing the morphology of micelles in water. A possible mechanism for the cylindrical assembly morphology was discussed.  相似文献   

10.
Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth factor-β3 (TGF-β3). The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.  相似文献   

11.
This study aimed to develop a sensitive and reliable immunoassay by applying a highly functional phospholipid polymer biointerface. We synthesized a phospholipid polymer--poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (MEONP)] (PMBN). MEONP contains active ester groups on the side chains for immobilization of antibodies via oxyethylene. PMBN with different compositions and oxyethylene chain lengths were synthesized; their effects on nonspecific and specific values in the immunoassay were evaluated. MPC units reduce the background by preventing nonspecific protein adsorption. MEONP units could conjugate antibodies and enhance the specific signal. The specific signal was independent of the oxyethylene chain length, but long oxyethylene chains increased the background. Specific signals corresponding to the antigen were observed with the PMBN coating, and a liner standard curve was obtained. The PMBN-coated surface maintained residual activity after long-term storage. This surface affords a low background without requiring blocking treatment and is suitable for immobilized antibodies.  相似文献   

12.
This work describes the development of polymersome-encapsulated hemoglobin (PEH) self-assembled from biodegradable and biocompatible amphiphilic diblock copolymers composed of poly(ethylene oxide) (PEO), poly(caprolactone) (PCL), and poly(lactide) (PLA). In the amphiphilic diblock, PEO functions as the hydrophilic block, while either PCL or PLA can function as the hydrophobic block. PEO, PCL, and PLA are biocompatible polymers, while the last two polymers are biodegradable. PEH dispersions were prepared by extrusion through 100 nm pore radii polycarbonate membranes. In this work, the encapsulation efficiency of human and bovine hemoglobin (hHb and bHb) in polymersomes was adjusted by varying the initial concentration of Hb. This approach yielded Hb loading capacities that were comparable to values in the literature that supported the successful resuscitation of hamsters experiencing hemorrhagic shock. Moreover, the Hb loading capacities of PEHs in this study can also be tailored simply by controlling the diblock copolymer concentration. In this study, typical Hb/diblock copolymer weight ratios ranged 1.2-1.5, with initial Hb concentrations less than 100 mg/mL. The size distribution, Hb encapsulation efficiency, oxygen affinity (P 50), cooperativity coefficient (n), and methemoglobin (metHb) level of these novel PEH dispersions were consistent with values required for efficient oxygen delivery in the systemic circulation. Taken together, our results demonstrate the development of novel PEH dispersions that are both biocompatible and biodegradable. These novel dispersions show very good promise as therapeutic oxygen carriers.  相似文献   

13.
Reactive phosphorylcholine polymers, which can recognize biosynthetic cell-surface tags, were synthesized to control cell attachment. Human promyelocytic leukemia cells (HL-60) with unnatural carbohydrates as cell-surface tags were harvested by treatment with N-levulinoylmannosamine (ManLev). The attachment of ManLev-treated HL-60 cells to 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers with hydrazide groups was studied. HL-60 cells, which are nonadhesive, did not attach to any polymer surface without ManLev treatment. In contrast, ManLev-treated HL-60 cells attached to a poly[MPC-co-n-butyl methacrylate (BMA)-co-methacryloyl hydrazide (MH)] (PMBH) surface following 15 min of incubation. The cells that attached to the PMBH surface retained their native morphology and viability for 24 h of incubation. On the other hand, approximately half of the HL-60 cells that attached to the poly(BMA-co-MH) (PBH) surface died. These results suggest that MH units in the polymer act as anchors for cell attachment and MPC units help to preserve cell viability on a polymer surface. The coculture of ManLev-treated HL-60 and fluorescence-stained human uterine cervical cancer cells (HeLa) was carried out on polymer surfaces. ManLev-treated HL-60 cells specifically attached to the PMBH surface. In contrast, both HL-60 and HeLa cells were observed on the PBH surface. The control of cellular interactions with synthetic polymers may be useful for the future development of cell-integrated biosensors and biomedical devices.  相似文献   

14.
Sun J  Deng C  Chen X  Yu H  Tian H  Sun J  Jing X 《Biomacromolecules》2007,8(3):1013-1017
Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H(2)O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.  相似文献   

15.
Poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) macromonomers were synthesized for preparation of a novel cytocompatible polymer. The cytocompatible polymer was composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and the enantiomeric PLLA (or PDLA) macromonomer. The degree of polymerization of the lactic acid in the PLLA and PDLA segments was designed to be ca. 20. The copolymer-coated surface was analyzed with static contact angle by water. From the result, the PLLA (or PDLA) segment and MPC unit were located on the coated surface, and the monomer unit in the copolymer was reconstructed by contacting water. Fibroblast cell culture was performed to evaluate cell adhesion on the coated surface, and the cell morphology was observed. The number of cell adhesion is correlated with the PL(D)LA content, and the cell morphology is correlated with the MPC unit content. The porous scaffold was prepared by the formation of a stereocomplex between the PLLA and PDLA, and the cell adhesion and following cell intrusion was then evaluated. The fibroblast cells adhered on the surface and intruded into the scaffold through the connecting pores after 24 h. The cell morphology became round shape from spreading with the decreasing PLLA (or PDLA) content in the copolymer. It is considered that the change in the cell morphology would be induced by the MPC unit as cytocompatible unit. These findings suggest that the porous scaffold makes it possible to have cytocompatibility and to produce three-dimensional tissue regeneration.  相似文献   

16.
A series of amphiphilic star and linear block copolymers were synthesized using ATRP. The core consisted of either polystyrene (PS) or poly(n-butyl acrylate) (PBuA), having different glass-transition (T(g)) values. These polymers were used as macroinitiators in the polymerization of the cationic 2-(dimethylamino)ethyl methacrylate (DMAEMA). The polymers were used to study the effects of polymer architecture and flexibility on the self-assembling properties, DNA complexation, and transfection. All polymers formed core-shell micelles in aqueous solutions and condensed plasmid DNA. Linear PDMAEMA-PBuA-PDMAEMA has transfection efficiency comparable to PEI25K in ARPE19 cell line. Glassy state of the micellar core and star-shaped architecture decreased the DNA transfection compared with the rubbery and linear polymer structures. The polymers showed low cellular toxicity at low nitrogen/phosphate (n/p) ratios.  相似文献   

17.
The synthesis of biocompatible, thermo-responsive ABA triblock copolymers in which the outer A blocks comprise poly(N-isopropylacrylamide) and the central B block is poly(2-methacryloyloxyethyl phosphorylcholine) is achieved using atom transfer radical polymerization with a commercially available bifunctional initiator. These novel triblock copolymers are water-soluble in dilute aqueous solution at 20 degrees C and pH 7.4 but form free-standing physical gels at 37 degrees C due to hydrophobic interactions between the poly(N-isopropylacrylamide) blocks. This gelation is reversible, and the gels are believed to contain nanosized micellar domains; this suggests possible applications in drug delivery and tissue engineering.  相似文献   

18.
Nowadays, biomaterials with amphiphilic properties are undergoing remarkable development. Here, we present one such development, in which we prepared amphiphilic graft copolymers, with a main chain composed of hydroxyethyl acrylamide (HEAA), to introduce hydrophilicity, and a side chain composed of poly(trimethylene carbonate) (PTMC) to introduce tunable hydrophobicity. These macromonomers were created with a novel molecular design, which introduced a ring-opening polymerization by the hydroxyl end group of HEAA in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene, and were analyzed by (1)H NMR and gel permeation chromatography. The amphiphilic graft copolymers were shown to form a hydrogel, the swelling ratio of which was greatly influenced by the number of trimethylene carbonate units. These copolymers also exhibited the Tyndall phenomenon in aqueous solution; they aggregated spontaneously due to hydrogen bonding and hydrophobic interactions, and a sodium 8-anilino-1-naphthalenesulfonate (ANS) fluorescence probe was introduced into the hydrophobic domain. The solution property of ANS in the polymer solution was analyzed by fluorescence measurement and (1)H NMR. The maximum fluorescence wavelength of ANS shifted to shorter wavelengths as the degree of polymerization of the hydrophobic PTMC, the composition of the macromonomer, and the concentration of the copolymer increased. The resulting copolymer formed a polymer micelle structure due to the tunable hydrophobic domain formation in selected solvents. Therefore, these amphiphilic graft copolymers containing a PTMC segment are excellent candidates for use as hydrophobic drug delivery carriers.  相似文献   

19.
Paclitaxel(PTX) is one of the most effective anticancer drugs for the treatment of various solid tumors, but its clinical use is limited by its poor solubility, low bioavailability, and severe systemic toxicity. Encapsulation of PTX in polymeric nanoparticles is used to overcome these problems but these micelles still need improvements in stability, pharmacokinetics, therapeutic efficacy, and safety profiles. In this study, we demonstrate a facile fabrication of a stable PTX-binding micelle made from poly(ethylene glycol)-block-dendritic polylysine, whose primary amines were reacted with phenethyl isothiocyanate(PEITC), a hydrophobic anticancer agent under clinical study. The amphiphilic conjugate(PEG-Gx-PEITC; Gx, the generation of the polylysine dendron) formed well-defined micelles whose core was composed of phenyl groups and thiourea groups binding PTX via π-π stacking and hydrogen bonding. Compared with the PTX-loaded poly(ethylene glycol)-block-poly(D,L-lactide)(PEGPDLLA/PTX) micelles in clinical use, PTX-loaded PEG-Gx-PEITC third-generation(PEG-G3-PEITC/PTX) micelles showed slowed blood clearance, enhanced tumor accumulation, and thus much improved in vivo therapeutic efficacy in both subcutaneous and orthotopic human breast cancer xenografts. Therefore, PEG-G3-PEITC is a promising drug delivery system for PTX in the treatment of breast cancer.  相似文献   

20.
Du JZ  Chen DP  Wang YC  Xiao CS  Lu YJ  Wang J  Zhang GZ 《Biomacromolecules》2006,7(6):1898-1903
A novel biodegradable amphiphilic brush-coil block copolymer consisting of poly(epsilon-caprolactone) and PEGylated polyphosphoester was synthesized by ring opening polymerization. The composition and structure of the copolymer were characterized by 1H NMR, 13C NMR, and FT-IR, and the molecular weight and molecular weight distribution were analyzed by gel permeation chromatograph (GPC) measurements to confirm the diblock structure. These amphiphilic copolymers formed micellar structures in water, and the critical micelle concentrations (CMCs) were around 10(-3) mg/mL, which was determined using pyrene as a fluorescence probe. Transmission electron microscopy (TEM) images showed that the micelles took an approximately spherical shape with core-shell structure, which was further demonstrated by laser light scattering (LLS) technique. The degradation behavior of the polymeric micelle was also investigated in the presence of Pseudomonas lipase and characterized by GPC measurement. Such polymer micelles from brush-coil block copolymers are expected to have wide utility in the field of drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号