首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
皮肤是哺乳动物最重要的组织之一.当皮肤受损时,受损组织通过系列伤口愈合反应的生理和心理作用被修复,实现组织再生.再生反应主要发生在胚胎发育早期,伤口自愈能力随着机体的成熟而减弱;并且哺乳动物的组织重塑过程较为复杂,在不正确的信号引导下,可能引起并发症而导致创面愈合异常.研究表明,伤口微环境的稳态和信号分子的辅助作用是愈...  相似文献   

2.
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.  相似文献   

3.
A wealth of growth factors are known to regulate the various cell functions involved in the repair process. An understanding of their therapeutic value is essential to achieve improved wound healing. Keratinocyte growth factor (KGF) seems to have a unique role as a mediator of mesenchymal-epithelial interactions: it originates from mesenchymal cells, yet acts exclusively on epithelial cells. In this paper, we study KGF's role in epidermal wound healing, since its production is substantially up-regulated after injury. We begin by modelling the dermal-epidermal signalling mechanism of KGF to investigate how this extra production affects the signal range. We then incorporate the effect of KGF on cell proliferation, and using travelling wave analysis we obtain an approximation for the rate of healing. Our modelling shows that the large up-regulation of KGF post-wounding extends the KGF signal range but is above optimal for the rate of wound closure. We predict that other functions of KGF may be more important than its role as a mitogen for the healing process.  相似文献   

4.
Vascular reorganization in wound healing is a complex process, which involves coagulation, endothelial cell proliferation and migration, basement membrane regeneration, and fibrinolysis. During this healing process, the hemostatic system and the angiogenic system are intimately interconnected. To elucidate the contribution of plasminogen in the process of wound healing, we have established a perfusion cell culture system. Using this novel cell culture system, we found that addition of plasminogen in the perfusion medium allowed the "scratch-wounded" endothelial cells to recover completely, while mini-plasminogen only affected the migration but not the proliferation of the endothelial cells. In the process of recovery with the addition of plasminogen, significant plasmin activity could only be detected when the growth of the endothelial cells have almost reached confluence. This finding indicates that wound healing is triggered and promoted during the absence of the proteolytic activity of plasmin. In addition, we could not detect any matrix metalloproteinase activity in the perfusion culture medium throughout the whole culture period. However, we did found that the circulating medium collected from the perfusion system at the early phase of the healing process has stimulatory activity on the growth of endothelial cells, but the proliferative activity decreased back to the basal level when the cells reached confluence. Thus, by using the perfusion cell culture system, we found that proliferation of endothelial cells is regulated by plasminogen and the wound healing process is controlled by a temporal interaction between the endothelial cells and plasminogen.  相似文献   

5.
创伤后不同时期渗出液(wound fluid,WF)的质和量的变化,在很大程度上反映伤口组织的愈合进程.研究伤口不同天数的WF对小鼠伤口组织的成纤维细胞(mouse wound fibrolast,mWFb)体外增殖能力的影响,探讨伤口微环境WF在调控mWFb的增殖规律.用两种培养基进行检测:1640培养基-10% FCS(fetal calf serum 胎牛血清)-10% WF或1640-1% FCS-10% WF.发现第1、3、7天的WF能刺激mWFb增殖.在高浓度(10%)FCS条件下,9、11、15天WF对mWFb生长产生抑制作用.而同一WF在低浓度(1%)FCS时导致mWFb死亡.结果提示,在损伤后一周期间伤口微环境能刺激mWFb增殖,但伤后更长时间的WF使细胞生长受阻止.在创伤愈合晚期的微环境中可能存在一些生长抑制因子.  相似文献   

6.
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.  相似文献   

7.
We have previously developed Epitheliome, a software agent representation of the growth and repair characteristics of epithelial cell populations, where cell behaviour is governed by a number of simple rules. In this paper, we describe how this model has been extended to incorporate an example of a molecular 'mechanism' behind a rule-in this case, how signalling by both endogenous and exogenous ligands of the epidermal growth factor receptor (EGFR) can impact on the proliferation of cell agents. We have developed a mathematical model representing release of endogenous ligand by cells, three-dimensional diffusion of the secreted molecules through a volume of cell culture medium, ligand-receptor binding, and bound receptor internalization and trafficking. Information relating to quantities of molecular species associated with each cell agent is frequently exchanged between the agent and signalling models, and the ratio of bound to free receptors determines cell cycle progression and hence the proliferative behaviour of the cell agents. We have applied this integrated model to examine the effect of plating density on tissue growth via autocrine/paracrine signalling. This predicts that cell growth is dependent on the concentration of exogenous ligand, but where this is limited, then growth becomes dependent on cell density and the availability of endogenous ligand. We have further modified the calcium concentration of the medium to modulate the formation of intercellular bonds between cells and shown that the increased propensity for cells to form colonies in physiological calcium does not result in significantly different patterns of receptor occupancy. In conclusion, our approach demonstrates that by combining agent-based and mathematical modelling paradigms, it is possible to probe the complex feedback relationship between the behaviour of individual cells and their interaction with one another and their environment.  相似文献   

8.
Impaired wound healing is a serious problem for diabetic patients. Wound healing is a complex process that requires the cooperation of many cell types, including keratinocytes, fibroblasts, endothelial cells, and macrophages. β-Lapachone, a natural compound extracted from the bark of the lapacho tree (Tabebuia avellanedae), is well known for its antitumor, antiinflammatory, and antineoplastic effects at different concentrations and conditions, but its effects on wound healing have not been studied. The purpose of the present study was to investigate the effects of β-lapachone on wound healing and its underlying mechanism. In the present study, we demonstrated that a low dose of β-lapachone enhanced the proliferation in several cells, facilitated the migration of mouse 3T3 fibroblasts and human endothelial EAhy926 cells through different MAPK signaling pathways, and accelerated scrape-wound healing in vitro. Application of ointment with or without β-lapachone to a punched wound in normal and diabetic (db/db) mice showed that the healing process was faster in β-lapachone-treated animals than in those treated with vehicle only. In addition, β-lapachone induced macrophages to release VEGF and EGF, which are beneficial for growth of many cells. Our results showed that β-lapachone can increase cell proliferation, including keratinocytes, fibroblasts, and endothelial cells, and migration of fibroblasts and endothelial cells and thus accelerate wound healing. Therefore, we suggest that β-lapachone may have potential for therapeutic use for wound healing. cell proliferation; mitogen-activated protein kinase signaling pathways  相似文献   

9.
Using human endothelial cells, we define a mechanism that accounts for the induction of interleukin 8 (IL-8) by protein I/IIf, an adhesin from Streptococcus mutans serotype f. We report that protein I/IIf interactions with endothelial cells increased the tyrosine phosphorylation of three cellular components with relative mass of 145 000, 125 000 and 70 000 in endothelial cells. These proteins were identified as phospholipase Cγ (PLCγ), focal adhesion kinase (FAK) and paxillin after immunoprecipitation with monoclonal antibodies (mAbs) and immunoblotting with antiphosphotyrosine mAbs. These results suggested that β1 integrins could be one of the components implicated in the modulin activity of protein I/IIf. By incubating protein I/IIf with either purified α5β1 integrins or with α5β1 integrins overexpressing CHO cells, we demonstrated that α5β1 integrins act as cell receptors for protein I/IIf. We also showed that protein I/IIf interactions with α5β1 integrins lead to IL-8 secretion. Using specific inhibitors, we demonstrated that protein I/IIf-induced IL-8 release involves mitogen-activated protein kinases (MAPKs), and that PLCγ and PKC also seem to contribute to protein I/IIf stimulation. However, PI-3K activation is not involved in IL-8 release. Altogether, these results indicate that, after binding to α5β1 integrins, protein I/IIf induces IL-8 release by activating the MAPKs signalling pathways.  相似文献   

10.
Keratinocytes are predominant in the uppermost layer of the skin, while fibroblasts dominate in the dermal layer. These cells interact with each other directly when fibroblasts migrate to a region of the wound where they induce keratinocytes proliferation through double paracrine signalling. Since a response from both keratinocytes and fibroblasts dominates during the inflammatory and proliferative phases, the exact knowledge how these two types of cells interact with each other is crucial for deeper understanding of mechanisms involved in the wound healing process. The aim of this study was to quantify alterations in mechanical properties of cells, i.e. fibroblasts and keratinocytes, in conditions mimicking direct cellular interactions observed in wound healing. Single cell elasticity was measured using atomic force microscope. To verify the influence of keratinocyte neighbors on fibroblasts elasticity (and vice versa), the effect of cellular confluency was studied in parallel. Our results enabled us to distinguish cellular density-related effects from intercellular interactions occurring between fibroblasts and keratinocytes. While the presence of keratinocytes affects fibroblasts spreading capability and mechanical properties, the keratinocytes remain unaffected by the fibroblasts. These results highlight the importance of the cellular deformability in understanding of the role of biomechanics in double paracrine signalling as fibroblast-keratinocyte interaction can change the potential of the wound healing.  相似文献   

11.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

12.
Malignant mesothelioma (MM) cells enhanced proliferation of endothelial cells (ECs) as well as their angiogenesis in vitro by secretion of fibroblast growth factor-2 (FGF2). This effect was suppressed by pre-treating MM cells with alpha-tocopheryl succinate (alpha-TOS), which inhibited FGF2 secretion by inducing mitochondria-dependent generation of reactive oxygen species. The role of FGF2 was confirmed by its down-regulation by treating MM cells with siRNA, abolishing EC proliferation and wound healing enhancement afforded by MM cells. We conclude that alpha-TOS disrupts angiogenesis mediated by MM cells by inhibiting FGF2 paracrine signalling.  相似文献   

13.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

14.
Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking.  相似文献   

15.
Ability of electromagnetic fields (EMF) to stimulate cell proliferation and differentiation has attracted the attention of many laboratories specialized in regenerative medicine over the past number of decades. Recent studies have shed light on bio‐effects induced by the EMF and how they might be harnessed to help control tissue regeneration and wound healing. Number of recent reports suggests that EMF has a positive impact at different stages of healing. Processes impacted by EMF include, but are not limited to, cell migration and proliferation, expression of growth factors, nitric oxide signalling, cytokine modulation, and more. These effects have been detected even during application of low frequencies (range: 30–300 kHz) and extremely low frequencies (range: 3–30 Hz). In this regard, special emphasis of this review is the applications of extremely low‐frequency EMFs due to their bio‐safety and therapeutic efficacy. The article also discusses combinatorial effect of EMF and mesenchymal stem cells for treatment of neurodegenerative diseases and bone tissue engineering. In addition, we discuss future perspectives of application of EMF for tissue engineering and use of metal nanoparticles activated by EMF for drug delivery and wound dressing.  相似文献   

16.
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel?-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (~51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.  相似文献   

17.
The tumor stroma has been described as “normal wound healing gone awry”. We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention.  相似文献   

18.
Fatty acids are shown to be important in various skin functions. Fatty acid binding protein (FABP) is postulated to serve as a lipid shuttle, solubilizing hydrophobic fatty acids and delivering them to the appropriate metabolic system. Among the FABP family proteins, epidermal-type FABP (E-FABP) is solely expressed in keratinocyte but its specific role in skin is not yet fully established. We found an elevated expression of E-FABP in regenerative keratinocytes of healing wounds. However, E-FABP null mice showed no marked differences compared to wild type mice in the process of wound closure, in vivo. On the other hand, in keratinocyte culture, E-FABP gene disruption decreased the cell motility, but did not affect the cell proliferation. E-FABP deletion may be compensated for in vivo by the microenvironment comprised of various cells such as fibroblasts and endothelial cells around the wound. Our analyses suggest that the E-FABP elevation may be necessary for the activation of cell motility within regenerative epidermis during wound healing.  相似文献   

19.
A lot of physiological processes including cell proliferation, cell migration, and differentiation are regulated by intercellular and cell-matrix interaction. The misbalance of intercellular and stroma-epithelial interaction is one of main factor of initiation of different pathological processes. Nonhealing wounds (chronic inflammation) and adenocarcinomas, despite the different external features, have many general inner features: cell proliferation, survival, cell migration, differentiation induced by cocktail of different growth factors and cytokines which promote inflammation and angiogenesis. Various stroma components including extracellular matrix are active participants of wound healing and cancer growth. The changes of pl-integrins distribution and cytokine expression, TGFbeta in particular, influence the development of pathological processes. It is possible to consider these factors as potential pharmacological targets.  相似文献   

20.
Chen L  Tredget EE  Wu PY  Wu Y 《PloS one》2008,3(4):e1886
Bone marrow derived mesenchymal stem cells (BM-MSCs) have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor) cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号