首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear DNA and salmonid phylogenetics   总被引:2,自引:0,他引:2  
There are many unresolved problems in salmonid systematics, both at the interspecific and sub-specific levels. Some of the major systematic problems in the subfamily Salmoninae are briefly reviewed along with the available molecular methods for their analysis. Nuclear DNA markers available for use in molecular systematics include localized and dispersed highly repetitive DNA sequences, moderately repetitive sequences such as the ribosomal RNA genes (rDNA), and single copy DNA sequences. Both coding and non-coding sequences can be examined in the rDNA and single copy DNA. The rDNA is especially suitable for use in phylogenetic analysis, since different regions evolve at different rates and can be used for comparisons at different taxonomic levels. Comparison of restriction maps of the entire rDNA repeating unit in 17 salmonid species from Hucho. Sahelinus, Salmo and Oncorhynchus has shown that the transcribed spacer regions are the most informative for interspecific comparisons and that the intergenic spacer has potential for use in intraspecific comparisons. Our current approach is to amplify selected regions from each of these spacers for analysis by DNA sequencing. DNA sequence analysis of the internal transcribed spacers should be very informative in elucidating interspecific relationships in Salvelinus and Oncorhynchus . Analysis of a hypervariable region in the intergenic spacer has potential for identification of geographically separated stocks. The relative utility of different types of nuclear DNA sequences for identification of stocks and subspecies is examined.  相似文献   

2.
3.
Summary Variation in the intergenic spacer of ribosomal DNA (rDNA) was detected among individual plants of the open-pollinated maize variety Hays Golden and populations derived from this variety. rDNA intergenic spacer-length variants were detected at approximately 200 bp intervals, consistent with the number of 200 bp subrepeats as the basis for this variation. Inheritance data revealed that more than one spacer-length class may be present on an individual chromosome. Fourteen different predominant rDNA intergenic spacer hybridization fragment patterns were detected. C-29, a population developed by 29 cycles of mass-selecting Hay Golden for high grain yield, exhibited a significant change in rDNA intergenic spacer hybridization fragment pattern composition in comparison to Hays Golden. This change included a reduction in frequency of the shortest predominant space-length variant (3.4 kb) and an increase in a 5.2 -kb hybridization fragment. I-31, a population developed through thermal neutron irradiation of Hays Golden and 31 generations of mass selection for high grain yield, did not exhibit a significant change in overall rDNA intergenic spacer composition. I-31 did exhibit an increase in frequency of the 5.2-kb hybridization fragment and a significant change in two specific hybridization fragment patterns that had also changed in C-29. These data, particularly for the C-29 population, suggest that rDNA intergenic spacer-length variants and/or associated loci were influenced by selection.Paper No. 8701, Journal Series, Nebraska Agricultural Research Division  相似文献   

4.
5.
James TY  Moncalvo JM  Li S  Vilgalys R 《Genetics》2001,157(1):149-161
The common split-gilled mushroom Schizophyllum commune is found throughout the world on woody substrates. This study addresses the dispersal and population structure of this fungal species by studying the phylogeny and evolutionary dynamics of ribosomal DNA (rDNA) spacer regions. Extensive sampling (n = 195) of sequences of the intergenic spacer region (IGS1) revealed a large number of unique haplotypes (n = 143). The phylogeny of these IGS1 sequences revealed strong geographic patterns and supported three evolutionarily distinct lineages within the global population. The same three geographic lineages were found in phylogenetic analysis of both other rDNA spacer regions (IGS2 and ITS). However, nested clade analysis of the IGS1 phylogeny suggested the population structure of S. commune has undergone recent changes, such as a long distance colonization of western North America from Europe as well as a recent range expansion in the Caribbean. Among all spacer regions, variation in length and nucleotide sequence was observed between but not within the tandem rDNA repeats (arrays). This pattern is consistent with strong within-array and weak among-array homogenizing forces. We present evidence for the suppression of recombination between rDNA arrays on homologous chromosomes that may account for this pattern of concerted evolution.  相似文献   

6.
Ribosomal DNA comprises a considerable part of a plant genome and is organized in tandemly arranged repeats composed of conservative coding sequences for ribosomal RNA and rapidly evolving spacer elements. We determined the nucleotide sequences of intergenic spacer regions (IGS) for five species from Solanacaea family: Solanum tuberosum, Atropa belladonna, Nicotiana tabacum, N. tomentosiformis, and N. sylvestris. The detailed comparative analysis of these and some other rDNA sequences allowed us to reveal the general regularities of evolution and functional organization of the rDNA spacer region and to clarify better phylogenetic relationships between the species within Solanacea family. A large body of experimental data on the application of rDNA in plant breeding, taxonomical studies and biotechnology are provided and discussed.  相似文献   

7.
8.
We analyzed the DNA sequence of the 5' external transcribed spacer (ETS) and part of the intergenic transcribed spacer (IGS) of the aphid ribosomal RNA gene (rDNA). The 5' ETS of aphid rDNA consists of 843 nucleotides with a G/C content of 69 mol/100 mol, far higher than that of any other known 5' ETS for insect rDNA. The IGS of aphid rDNA contained a characteristic array of repeated sequences of 247 nucleotides. The repeated sequences were identical. It was shown that the number of the repeating sequence is heterogeneous.  相似文献   

9.
Reed KM  Hackett JD  Phillips RB 《Gene》2000,249(1-2):115-125
This study examines sequence divergence in three spacer regions of the ribosomal DNA (rDNA) cistron, to test the hypothesis of unequal mutation rates. Portions of two transcribed spacers (ITS-1 and 5' ETS) and the non-transcribed spacer (NTS) or intergenic spacer (IGS) formed the basis of comparative analyses. Sequence divergence was measured both within an individual lake trout (Salvelinus namaycush) and among several related salmonid species (lake trout; brook trout, Salvelinus fontinalis; Arctic char, Salvelinus alpinus; Atlantic salmon, Salmo salar; and brown trout, Salmo trutta). Despite major differences in the length of the rDNA cistron within individual lake trout, minimal sequence difference was detected among cistrons. Interspecies comparisons found that molecular variation in the rDNA spacers did not conform to the predicted pattern of evolution (ITS spacers相似文献   

10.
When the hypervariable 16S-23S intergenic spacer regions found in prokaryotic ribosomal DNA (rDNA) are amplified from conserved adjacent sequences, homoduplex double-stranded DNA structures and heteroduplex structures containing substantial regions of single-stranded DNA are generated. The electrophoretic separation of these structures results in product profile patterns, which may be organized into highly correlated pattern groups of ribosomal spacer and heteroduplex polymorphism (RS/HP) types. In a test panel of 380 Salmonella strains that were analyzed by this procedure, 36 unique RS/HP types were observed. Of the 28 serovars in the test group, 21 showed single characteristic RS/HP types. The remaining seven serovars each contained multiple RS/HP types, which were also unique to individual serovars. Formation of heteroduplex structures with a substantially reduced electrophoretic mobility was observed in 29 of the 36 RS/HP pattern types. Because the mobility of these heteroduplex structures is sensitive to intergenic spacer sequence composition, the presence of these structures adds an additional diagnostic feature that is extremely useful in the differentiation of Salmonella serovars. The RS/HP types show sufficient diversity to be useful in the identification of many commonly observed Salmonella serovars. This analytical procedure is simple to perform and is well suited to rapid and inexpensive screening of large numbers of Salmonella strains.  相似文献   

11.
We have sequenced and analyzed 8.3 kb of sequence adjacent and distal to the human ribosomal DNA (rDNA); this distal sequence connects to the rDNA cluster just 4 kb upstream of the first promoter and is shared among the acrocentric chromosomes and, at least in part, it is also present in other primates. The sequence differs in character from that of the rDNA intergenic spacer (IGS) in that it does not contain long stretches of either polypyrimidine or polypurine. However, just like the IGS, it contains numerous repetitive elements, including retroposed fragments of 28S rRNA and large pieces of the IGS. In addition, we show that the rDNA clusters are not interrupted by other sequences and do not recombine with this distal segment. Received: 9 September 1996; in revised form: 4 February 1997 / Accepted: 24 February 1997  相似文献   

12.
We have analyzed the sequence organization of the central spacer region of the extrachromosomal ribosomal DNA from two strains of the acellular slime mold Physarum polycephalum. It had been inferred previously from electron microscopy that this region, which comprises about one third of the 60 kb3 palindromic rDNA, contains a complex series of inverted repetitious sequences. By partial digestion of end-labeled fragments isolated from purified rDNA and from rDNA fragments cloned in Escherichia coli, we have constructed a detailed restriction map of this region. The 11 kb of spacer DNA of each half molecule of rDNA contains the following elements: (a) two separate regions, one of 1.1 kb and one of 2.1 kb, composed of many direct repeats of the same 30 base-pair unit; (b) a region of 4.4 kb composed of a complex series of inverted repeats of a 310 base-pair unit; (c) another region of 1.6 kb composed of inverted repeats of the same 310 base-pair unit located directly adjacent to the center of the rDNA; (d) two copies of a unique sequence of 0.85 kb, which probably contains a replication origin. Some of the CpG sequences in the spacer resist cleavage by certain restriction endonucleases and thus appear to be methylated. The lack of perfect symmetry about the central axis and the arrangement of inverted repeated sequences explain the complex pattern of branches and forks of the fold-back molecules previously observed by electron microscopy. Comparison of the rDNA restriction maps from the two strains of Physarum suggests that the repeat units in the spacer are undergoing concerted evolution. We propose a model to explain the evolutionary origin of the several palindromic axes in the Physarum rDNA spacer.  相似文献   

13.
14.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

15.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

16.
中国大麦叶绿体DNA和核糖体RNA基因限制性片段长度多型性   总被引:6,自引:1,他引:5  
张启发 《遗传学报》1992,19(2):131-139
本文报道了我们对我国不同大麦区80份大麦品种叶绿体DNA和核糖体RNA基因限制性片段长度多型性的研究。结果表明:rDNA间隔序列长度存在丰富的多样性,80份材料中出现了8种长度变异炎型共组成8种表现型。长度变异类型及其表现型在地理分布上存在着明显的区域性。推测这种分布上的地区性与植物对环境的适应性有关。所用的两个叶绿体DNA克隆片段未检测到限制性片段长度多型性,说明栽培大麦叶绿体DNA变异程度低。  相似文献   

17.
The 17S/5.8S/26S ribosomal DNA (rDNA) sequences were mapped to the three satellited (SAT) chromosomes in the common hexaploid cultivated oat Avena sativa (2n = 6x = 42, AACCDD genomes). In situ hybridization and Southern hybridization of maize and (or) wheat rDNA probes to DNA from nullisomics derived from the cultivar 'Sun II' allowed the placement of rDNA sequences to the physical chromosomes. A restriction map was produced for the rDNA sequences of 'Sun II' using a maize probe from the transcribed region of the 17S/26S rDNA repeat. The set of rDNA repeats on SAT 2 of 'Sun II' possesses a 10.5-kb EcoRI fragment not found in the rDNA repeats of SAT 1 and SAT 8. This 10.5-kb fragment results from the absence of an EcoRI site in the intergenic spacer (IGS) of SAT 2 repeats. Extensive polymorphisms were demonstrated for three hexaploid Avena species, namely, the Mediterranean-type cultivated oat A. byzantina and the wild species A. sterilis and A. fatua. However, geographically diverse A. sativa cultivars displayed little rDNA variation. In contrast with all of the A. sativa cultivars examined, the A. sterilis accessions generally lacked the 10.5-kb EcoRI fragment. The results support the hypothesis that A. sativa accessions descend from a limited ancestral cultivated population. The rDNA polymorphisms are attributed to differences in lengths and restriction sites of the IGS.  相似文献   

18.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

19.
Investigation of randomly cloned genomic and chromosome-specific sequences of ribosomal DNA (rDNA) from different organisms show that different regions of this long repeat unit evolve at different rates. This proves to be true not only with regard to evolutionary variability of transcribed and nontranscribed intergenic (spacer) regions of rDNA. The intergenic spacer (rIGS) of human ribosomal DNA contains both highly variable and more conservative regions with putative regulatory functions. In the present study a comparative analysis of some segments of the rIGS pre-promoter (regulatory) region in human and pygmy chimpanzee (Pan paniscus) was carried out. For these purposes, the corresponding DNA fragments were amplified in PCR with oligonucleotide primers specific to human rIGS and sequenced. Our results show that at the background of substantial structural similarity of these regions in man and chimpanzee, i.e., the presence of highly homologous sequences and similar repetitive units, there are substantial differences between them. These differences are associated with point mutations, insertions, deletions, and complex structural rearrangements.  相似文献   

20.
We analyzed polymorphism of the PCR-amplified 16S-23S rDNA spacer of Aeromonas species. A total of 69 isolates representing 18 DNA hybridization groups were used in this study. The analysis of PCR products of 16S-23S rDNA spacers revealed patterns consisting of two to eight DNA fragments. The fragment sizes ranged from 730 to 1050 bp. DNA patterns revealed a considerable genetic diversity between species and within a species. When a procedure to eliminate heteroduplex formation was performed, the number of bands was reduced to 2-5. Nevertheless the homoduplex ISR (intergenic spacer region) patterns obtained were not useful for species distinguishing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号