首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe3+), yet the final attachment requires reduced haem (Fe2+). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments.  相似文献   

2.
The kinetics of haem binding to human serum albumin and haemopexin were studied by means of the stopped flow technique. The reaction could be divided into three kinetically clearly distinguished steps: (1) extremely fast reaction of haem with nonspecific binding sites on the surface of the apoprotein molecule; this type of haem binding site seems to exist in proteins in general; (2) by meaas of equilibrium with its monomer, haem is transferred to the specific binding site; this second order reaction takes about 1–2 s, the reaction rate constant amounts to ≈106 l mol?1 s?1 both for albumin and haemopexin: (3) conformational changes of haemoprotein molecule, accompanied by changes of absorption spectra in the Soret region; this series of slow monomolecular reactions takes about 20 min. These results are discussed in connection with the mechanism of haem transport from blood to liver cells.  相似文献   

3.
In order to investigate the function of haem oxygenase in neuronal cell death or survival, we have determined in PC12 cells whether induction of haem oxygenase mRNA and protein or inhibition of haem oxygenase activity may be able to modulate the cell response to an oxidative stress. Inhibition of glutathione biosynthesis by buthionine sulfoximine (BSO) has indeed been demonstrated, in this cell line, to decrease the intracellular content of glutathione and to trigger a gradual and programmed cell death. Inhibition of haem oxygenase by zinc protoporphyrin IX, a potent inhibitor of this enzyme, or by a recently described peptidic inhibitor, induced a significant decrease in the toxicity of BSO. This protective action was not due to an alteration in the metabolism of glutathione and was still observed when the protecting agent was added several hours after BSO treatment. Induction of haem oxygenase-1 mRNA and protein by either haemin or pyrrolidine dithiocarbamate was associated with no protection or a significant reduction in the toxicity of BSO respectively. Our results indicate that induction of haem oxygenase-1 is not obligatorily associated with an improved resistance towards oxidative stress and suggest that a byproduct of haem degradation may also become detrimental.  相似文献   

4.
5.
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   

6.
《Free radical research》2013,47(6):415-422
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   

7.
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.  相似文献   

8.
The majority of the Mycobacterium tuberculosis response to hypoxia and nitric oxide is through the DosRS (DevRS) two-component regulatory system. The N-terminal input domain of the DosS sensor contains two GAF domains. We demonstrate here that the proximal GAF domain binds haem, and identified histidine 149 of DosS as critical to haem-binding; the location of this histidine residue is similar to the cGMP-binding site in a crystal structure of cyclic nucleotide phosphodiesterase 2A. GAF domains are frequently involved in binding cyclic nucleotides, but this is the first GAF domain to be identified that binds haem. In contrast, PAS domains (similar to GAF domains in structure but not primary sequence) frequently use haem cofactors, and these findings further illustrate how the functions of these domains overlap. We propose that the activation of the DosS sensor is controlled through the haem binding of molecular oxygen or nitric oxide.  相似文献   

9.
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO‐1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO‐2 deficient mice is impaired with exorbitant inflammation and absence of HO‐1 expression. This study addresses the role of HO‐2 in cutaneous excisional wound healing using HO‐2 knockout (KO) mice. Here, we show that HO‐2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO‐2 KO mice compared to WT controls. Surprisingly, wound closure in HO‐2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO‐1 induction in HO‐2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C‐X‐C) ligand‐11 (CXCL‐11) in wounds of HO‐2 KO mice. Abnormal regulation of CXCL‐11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL‐11 expression in HO‐2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.  相似文献   

10.
11.
The amounts of protochlorophyllide (P650) and protohaem were measured in ageing dark-grown barley leaves. Maximum amounts of P650 and protohaem were found in 6- to 8-day-old material after which P650 declined rapidly and protohaem more slowly. In leaves exposed to light maximum chlorophyll was produced in 6-day-old material with progressively less the older the leaves. Haem concentrations increased in seedlings of all ages exposed to light. A lag phase was observed for both chlorophyll and haem formation in leaves given a light treatment. Haem, however, showed a slight yet sig nificant decline as chlorophyll production commenced. The results indicate that chlorophyll and haem synthesis share a common pool of δ-aminolae vulinic acid (ALA). At a certain stage of development, the magnesium porphyrin pathway diverts precursors away from haem synthesis. It is only when the ALA synthesising system is well developed that the production of ALA can satisfy pathways to both haem and chlorophyll. The observed changes in haem under certain conditions suggest that, as in animal systems, haem levels may regulate porphyrin formation (chlorophylls) by controlling the supply of ALA.  相似文献   

12.
13.
Tetrapyrroles are a family of compounds that contain four pyrrole rings. They are involved in many fundamental biological processes such as photoreception, electron transport, gas transport and also as cofactors for enzymatic reactions. As regulators of protein activity, tetrapyrroles mediate cellular response to light, oxygen and nutrient levels in the surrounding environment. Biosynthesis of haem tetrapyrroles shares, conserved pathways and enzymes among all three domains of life. This is contrasted by chlorophyll biosynthesis that is only present in eubacteria and chloroplasts, or cobalamin biosynthesis that is only present in eubacteria and archaea. This implicates haem as the most ancient, and chlorophyll as the most recent, of the common tetrapyrroles that are currently synthesized by existing organisms. Haem and chlorophyll are both toxic when synthesized in excess over apo-proteins that bind these tetrapyrroles. Accordingly, the synthesis of these tetrapyrroles has to be tightly regulated and coordinated with apo-protein production. The mechanism of regulating haem and chlorophyll synthesis has been studied intensively in Rhodobacter species and will be discussed.  相似文献   

14.
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins ). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as ‘unclear’. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.  相似文献   

15.
Exogenously supplied bovine haemin, fed to etiolated barley leaves, inhibited chlorophyll synthesis in leaves exposed to light. Haemin inhibited the regeneration of protochlorophyllide (P650) and the conversion of exogenously supplied δ-aminolaevulinate (ALA) to protochlorophyll (P630). The effect of haemin on chlorophyll production was overcome by incubating the leaves in water in the dark before light treatment, suggesting the operation of a rapid haem destruction mechanism in leaves. Protohaem turnover in dark-grown leaves was between 8 and 9 hr, based on the rate of degradation of erogenous haemin and the rate of protohaem breakdown in laevulinic acid (LA) treated leaves. The rate constant for haem destruction was 85 pmol/nmol/hr in the dark and 45 pmol/nmol/hr after 4 hr light. There was no evidence that light affects the synthesis of protohaem. It appears that the regulation of endogenous levels of protohaem is by breakdown and it is this mechanism which is under light control. Haem considerably decreased the incorporation of radioactivity from glycollate-[14C], glycine-[14C] and glutamate-[14C] into accumulated ALA in the presence of LA.  相似文献   

16.
The haem proteins catalase and peroxidase are stress response proteins that detoxify reactive oxygen species. In the bacterium Bradyrhizobium japonicum, expression of the gene encoding the haem biosynthesis enzyme delta-aminolevulinic acid dehydratase (ALAD) is normally repressed by the Irr protein in iron-limited cells. Irr degrades in the presence of iron, which requires haem binding to the protein. Here, we found that ALAD levels were elevated in iron-limited cells of a catalase-deficient mutant, which corresponded with aberrantly low levels of Irr. Irr was undetectable in wild-type cells within 90 min after exposure to exogenous H2O2, but not in a haem-deficient mutant strain. In addition, Irr did not degrade in response to iron in the absence of O2. The findings indicate that reactive oxygen species promote Irr turnover mediated by haem, and are involved in iron-dependent degradation. We demonstrated Irr oxidation in vitro, which required haem, O2 and a reductant. A truncated Irr mutant unable to bind ferrous haem does not degrade in vivo, and was not oxidized in vitro. We suggest that Irr oxidation is a signal for its degradation, and that cells sense and respond to oxidative stress through Irr to regulate haem biosynthesis.  相似文献   

17.
Allyl isopropylacetamide (AIA) does not stimulate porphyrin biosynthesis in greening barley; AIA inhibits the synthesis of 5-aminolaevulinate (ALA) in plants and does not overcome the repression of ALA-synthetase. This indicates that the ALA synthesis system of green plants is regulated differently from ALA synthetase of mammalian systems. Laevulinic acid (LA) inhibited the biosynthesis of tetrapyrrole pigments in greening barley and diminished the insertion of 55Fe into extractable protohaem, confirming that haem was synthesized at a time of little net increase in protohaem. ALA feeding increased iron incorporation into protohaem without increasing either extractable protohaem or cytochromes b and f. Since ALA feeding greatly increased the protochlorophyllide content of darkgrown plants and subsequent chlorophyll levels in the light, the regulation of haem pigment synthesis in plants occurs after protoporphyrin and protohaem synthesis and is likely to involve the turnover of protohaem produced in excess of haem protein requirements.  相似文献   

18.
In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is warranted, whereas significance of F287 may arise from a strong hydrophobic interaction between the alkyl group(s) of the substrate and the phenyl ring of F287. We believe that G288 is crucial because of its size. Any other residue with a relatively bulky side chain will hinder the access of substrate to the active site. The effects of the mutations suggests that subtle protein conformational changes in the putative substrate-binding pocket regulate the formation of a fully active monomer-micelle complex with low-spin haem iron and that structural communication exists between the substrate- and micelle-binding sites of CYP74C3. Conservation in CYP74 sequence alignments suggests that N285, F287, and G288 in CYP74C3 and the equivalent residues at positions in other CYP74 enzymes are likely to be critical to catalysis. To support this we show that G324 in CYP74D4 (Arabidopsis AOS), equivalent to G288 in CYP74C3, is a primary determinant of positional specificity. We suggest that the overall structure of CYP74 enzymes is likely to be very similar to those described for classical P450 monooxygenase enzymes.  相似文献   

19.
Bacterioferritins, also known as cytochrome b (1), are oligomeric iron-storage proteins consisting of 24 identical amino acid chains, which form spherical particles consisting of 24 subunits and exhibiting 432 point-group symmetry. They contain one haem b molecule at the interface between two subunits and a di-nuclear metal binding center. The X-ray structure of bacterioferritin from Mycobacterium smegmatis (Ms-Bfr) was determined to a resolution of 2.7 A in the monoclinic space group C2. The asymmetric unit of the crystals contains 12 protein molecules: five dimers and two half-dimers located along the crystallographic twofold axis. Unexpectedly, the di-nuclear metal binding center contains zinc ions instead of the typically observed iron ions in other bacterioferritins.  相似文献   

20.
Recent advances in mammalian haem transport   总被引:10,自引:0,他引:10  
Haem is a structural component of numerous cellular proteins and contributes greatly to iron metabolic processes in mammals. Haem-carrier protein 1 (HCP1) has recently been cloned and characterized as a putative transporter in the apical region of the duodenum, and is responsible for uptake of haem into the gut cells. Its expression is regulated pre- and post-translationally in hypoxic and iron-deficient mice, respectively. The identification of HCP1 has revealed the long-sought mechanism by which haem--an important source of dietary iron--is absorbed from the diet by the gut. Feline leukaemic virus receptor (FLCVR) and ABC transporter ABCG2, characterized in haematopoietic cells, have also recently been shown to export haem, particularly under stress. FLVCR protects developing erythroid cells from haem toxicity during the early stages of differentiation, and ABCG2 averts protoporphyrin accumulation (particularly under hypoxic conditions). These haem-efflux proteins are expressed in other cells and tissues including the intestine where they might function as apical haem exporters to prevent toxicity in the enterocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号