首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the oxidative damage in rat brain caused by oxidative stress, regional changes in the levels of lipid peroxidation products and antioxidative defense systems in cerebral cortex and hippocampus, and in their synapses, which modulate learning and memory functions in the brain, were studied. When rats were subjected to hyperoxia as an oxidative stress, thiobarbituric acid reactive substance (TBARS) in the regions studied increased more than in normal rats by approximately 35%. The values in oxygen-unexposed vitamin E-deficient rats were also higher than in normal rats. It was found that the TBARS contents in synaptosomes isolated from both regions were remarkably higher than in the organs. These results imply that synapses are more susceptible to oxidative stress than the organ itself. This tendency was also observed in the content of conjugated diene. In response to oxidative stress, the status of the antioxidant defense system in each region, i.e. the concentration of vitamin E, and the activities of superoxide dismutase, catalase and glutathione peroxidase, decreased remarkably. On the other hand, in oxygen-unexposed vitamin E-deficient rats, the activities of these enzymes in each region tended to increase, except for catalase activity. These results suggest that in response to the oxidative stress, the antioxidant defense systems may be consumed to prevent oxidative damage, and then, may be supplied through the antioxidant network.  相似文献   

2.
Because diabetes mellitus isassociated with impairment of testicular function, ultimately leadingto reduced fertility, this study was conducted to evaluate theexistence of a cause-effect relationship between increased oxidativestress in diabetes and reduced mitochondrial antioxidant capacity. Thesusceptibility to oxidative stress and antioxidant capacity (in termsof glutathione, coenzyme Q, and vitamin E content) of testismitochondrial preparations isolated from Goto-Kakizaki (GK)non-insulin-dependent diabetic rats and from Wistar control rats, 1 yrof age, was evaluated. It was found that GK mitochondrial preparationsshowed a lower susceptibility to lipid peroxidation induced byADP/Fe2+, as evaluated by oxygen consumption and reactiveoxygen species generation. The decreased susceptibility to oxidativestress in diabetic rats was associated with an increase inmitochondrial glutathione and coenzyme Q9 contents, whereas vitamin Ewas not changed. These results demonstrate a higher antioxidantcapacity in diabetic GK rats. We suggest this is an adaptive responseof testis mitochondria to the increased oxidative damage in diabetes mellitus.

  相似文献   

3.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

4.
Oxidative stress is currently hypothesized to be a mechanism underlying diabetes. The present study was designed to evaluate the effect of umbelliferone (UMB), a derivative of coumarin, on erythrocyte lipid peroxidation, antioxidants, and lipid profile in normal and streptozotocin (STZ) diabetic rats. Diabetes was induced in adult male albino rats of Wistar strain, weighing 180 to 200 g, by the administration of STZ (40 mg/kg/b-wt) intraperitonially. The normal and diabetic rats were treated with UMB in 10 percent dimethyl sulfoxide (DMSO) dissolved in water for 45 days. The diabetic rats had elevated levels of blood glucose and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and lipid hydroperoxide (HP) and decreased levels of nonenzymatic antioxidants (Vitamin C and reduced glutathione [GSH]), elevated levels of vitamin E, and elevated levels of enzymatic antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]), elevated glucose-6-phosphate dehydrogenase activity, and altered lipid profile (cholesterol and phospholipids) in erythrocytes. These changes were reversed by treatment with UMB. Thus, our results indicate that the administration of UMB shows promising potential for the restoration of normal blood glucose levels, erythrocyte lipid peroxidation, antioxidants, and lipid profile in STZ-diabetic.  相似文献   

5.
The respiratory function and the antioxidant capacity of liver mitochondrial preparations isolated from Goto-Kakizaki non-insulin dependent diabetic rats and from Wistar control rats, with the age of 6 months, were compared. It was found that Goto-Kakizaki mitochondrial preparations presented a higher coupling between oxidative and phosphorylative systems, compared to non-diabetic preparations. Goto-Kakizaki mitochondria presented a lower susceptibility to lipid peroxidation induced by ADP/Fe2+, as evaluated by the formation of thiobarbituric acid substances. The decreased susceptibility to peroxidation in diabetic rats was correlated with an increase in mitochondrial vitamin E (alpha-tocopherol) content and GSH/GSSG ratio. Moreover, the glutathione reductase activity was significantly increased, whereas the glutathione peroxidase was decreased. Superoxide dismutase activity was unchanged in diabetic rats. Fatty acid analyses showed that the content in polyunsaturated fatty acids of Goto-Kakizaki mitochondrial membranes was significantly higher compared to controls. These results indicate that the lower susceptibility to lipid peroxidation of mitochondria from diabetic rats was related to their antioxidant defense systems, and may correspond to an adaptative response of the cells against oxidative stress in the early phase of diabetes.  相似文献   

6.
Lipid peroxidation in blood of vitamin B6 deficient rats was significantly increased when compared to pair-fed controls. The observed increased lipid peroxidation in vitamin B6 deficiency was correlated with high levels of lipids, metal ions and low levels of antioxidants, alpha-tocopherol, ascorbic acid and reduced GSH. Supplementation of methionine or vitamin E along with the vitamin B6 deficient diet restored the levels of antioxidants to near normal and also protected against oxidative stress. However plasma TBARS level as well as total lipids were still elevated in M-B6 diet fed rats and normalized in E-B6-d rats.  相似文献   

7.
The objective of the study was to investigate the role of Umbelliferone (UMB) on lipid peroxidation, nonenzymic and enzymic antioxidants in the plasma and liver of streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 180-200 g, were induced diabetes by administration of STZ (40 mg/kg b.wt.) intraperitoneally. The normal and diabetic rats were treated with UMB (30 mg/kg b.wt.) dissolved in 10% dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had an elevation in the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)), and a reduction in nonenzymic antioxidants (vitamin C and reduced glutathione (GSH) except vitamin E in the plasma and liver, and enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the liver. Decreased level of beta-carotene and increased level of ceruloplasmin (Cp) were observed in the plasma of diabetic rats. Treatment with UMB and glibenclamide brought back lipid peroxidation markers, nonenzymic and enzymic antioxidants to near normalcy. Since UMB treatment decreases lipid peroxidation markers and enhances antioxidants' status it can be considered as a potent antioxidant.  相似文献   

8.
Aims/hypothesis It is generally accepted that oxidative stress is responsible for etiology and complications of diabetes. During uncontrolled Type 1 diabetes, plasma leptin levels rapidly fall. However, it is not known whether diabetes-induced hypoleptinemia has any role in oxidative stress related to uncontrolled Type I diabetes. The present study was designed to examine the effects of leptin treatment on plasma lipid peroxidation and reduced glutathion of normal and streptozotocin(STZ)-induced diabetic rats. Methods Diabetes was induced by single injection of Streptozotocin (55 mg/kg bw). One week after induction of diabetes, rats began 5-day treatment protocol of leptin injections of (0.1 mg/kg bw i.p.) or same volume vehicle. At the end of the 5th day, rats were sacrificed by cardiac puncture under anesthesia and their plasma was taken for plasma leptin, malondialdehyde, and reduced glutathione measurements. Results Plasma leptin levels decreased in STZ-induced diabetic rats while plasma glucose, TBARS, and GSH levels increased. Plasma leptin levels were not affected with leptin treatment in both diabetic and non-diabetic rats. The elevation in plasma TBARS associated with STZ diabetes decreased with leptin treatment. Leptin also increased plasma GSH levels in diabetic rats. In non-diabetic rats, treatment with leptin did not change plasma TBARS and GSH levels. Conclusions/interpretations In conclusion, leptin treatment is able to attenuate lipid peroxidation in STZ-diabetic rats, in the onset of diabetes, by increasing the GSH levels without affecting hyperglycemia and hypoleptinemia.  相似文献   

9.
Diabetes mellitus is the most common serious metabolic disorder and it is considered to be one of the five leading causes of death in the world. Hyperglycemia-mediated oxidative stress plays a crucial role in diabetic complications. Hence, this study was undertaken to evaluate the protective effect of esculetin on the plasma glucose, insulin levels, tissue antioxidant defense system and lipid peroxidative status in streptozotocin-induced diabetic rats. Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. Extent of oxidative stress was assessed by the elevation in the levels of lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD); reduction in the enzymic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST); nonenzymic antioxidants Vitamin C, E and reduced glutathione (GSH) were observed in the liver and kidney tissues of diabetic control rats as compared to control rats. Oral supplementation of esculetin to diabetic rats for 45 days significantly brought back lipid peroxidation markers, enzymic and nonenzymic antioxidants to near normalcy. Moreover, the histological observations evidenced that esculetin effectively rescues the hepatocytes and kidney from hyperglycemia mediated oxidative damage without affecting its cellular function and structural integrity. These findings suggest that esculetin (40 mg/kg BW) treatment exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic and renal tissues. Further, detailed studies are in progress to elucidate the molecular mechanism by which esculetin elicits its modulatory effects in insulin signaling pathway.  相似文献   

10.
Alloxan-diabetic rats and age-matched controls were killed after 6 weeks of diabetes; heart and kidneys were removed and assayed for thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides, lipid phosphorus, total fatty acid composition and glutathione. Tissue homogenates from a second group of diabetic and control rats were incubated in oxygen-saturated buffer with and without the free radical generating system Fe2+/ascorbate (0.1/1.0 mM) and were assayed for lipid peroxidation. Diabetic hearts contained markedly lower levels of TBARS and lipid hydroperoxides (40% and 18%, respectively) than control hearts, whereas differences in TBARS were less pronounced in kidneys (9%). Incubation of homogenates of both organs in the presence or absence of Fe2+/ascorbate for up to 2 h yielded significantly lower levels of TBARS and lipid hydroperoxides with diabetic tissue. Diabetic hearts and kidneys contained higher levels of glutathione (28% and 13% over controls) and both diabetic tissues showed much higher linoleate/arachidonate ratios than did the controls (9.86 vs. 2.56 for heart, 2.01 vs. 0.86 for kidney). We conclude that diabetic tissues develop enhanced defense systems against oxidative stress and we assume tha the lower levels of arachidonate contribute to their resistance to lipid peroxidation as well.  相似文献   

11.
The study investigated the perturbation of oxidant-antioxidant balance in brain synaptosomes of diabetic rats and determined the antioxidant and free radical-scavenging property of the Indian bay leaf. Brain synaptosomes were isolated from control and streptozotocin-induced diabetic animals and oxidative stress parameters were assayed. A methanolic extract of bay leaf (BLE) was tested for the polyphenolic content and antioxidant activity by in vitro assays. A significant increase in the levels of lipids and lipid peroxidation products and a decline in antioxidant potential were observed in diabetic rat brain synaptosomes. The total polyphenolic content of BLE was found to be 6.7 mg gallic acid equivalents (GAE)/100g. BLE displayed scavenging activity against superoxide and hydroxyl radicals in a concentration-dependent manner. Further, BLE showed inhibition of Fe(2+)-ascorbate induced lipid peroxidation in both control and diabetic rat brain synaptosomes. Maximum inhibition of lipid peroxidation, radical scavenging action and reducing power of BLE were observed at a concentration of 220 microg GAE. These effects of BLE in vitro were comparable with that of butylated hydroxyl toluene (BHT), a synthetic antioxidant. It can be concluded that synaptosomes from diabetic rats are susceptible to oxidative damage and the positive effects of bay leaf in vitro, could be attributed to the presence of antioxidant phytochemicals.  相似文献   

12.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

13.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was injected into chicken eggs prior to incubation to study possible mechanisms of toxicity and teratogenicity. One of the suggested mechanisms of teratogenicity is oxidative stress. Eggs were injected simultaneously with TCDD and cotreatment compounds in an attempt to prevent oxidative stress or to block cytochrome P450 activity. Indicators of oxidative stress were assessed in livers and brains of hatchling chicks. In ovo, exposure to TCDD caused significant effects on indicators of oxidative stress in liver, but not in the brain of the hatchling chicks. TCDD did not significantly affect superoxide production. In liver, TCDD treatment caused a decrease in glutathione content and glutathione peroxidase activity and an increase in the ratio of oxidized to reduced glutathione. TCDD increased the susceptibility to lipid peroxidation and oxidative DNA damage in liver. Administration of the antioxidants vitamin E and vitamin A provided partial protection against TCDD-induced oxidative stress in liver. The lack of effect of TCDD in chicken brain could be due to the low cytochrome P4501A activity in this tissue and little accumulation of TCDD in brain compared to liver. Phenytoin, a known inducer of oxidative stress, caused a decrease in glutathione content and an increase in susceptibility to lipid peroxidation in both liver and brain and increased oxidative DNA damage in brain. Responsiveness varied among individual animals, but measures of the oxidative stress were correlated.  相似文献   

14.
This study was undertaken to investigate the effect of Cassia auriculata leaf extract on tissue lipid peroxidation and antioxidant status in experimental hepatotoxicity. Administering ethanol to rats for 60 days resulted in significantly elevated levels of serum total bilirubin, aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) as compared with those of the experimental control rats. Significantly elevated levels of tissue thiobarbituric acid reactive substances (TBARS), hydroperoxides and lowered activities of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were also observed on alcohol treatment as compared with those of experimental control rats. Concentration of serum non-enzymic antioxidants such as vitamin E and vitamin C were also significantly lowered on alcohol supplementation. Treatment with Cassia auriculata leaf extract at a dose of 250 mg kg(-1) body weight and 500 mg kg(-1) body weight to rats administered alcohol, lowered the levels of TBARS and hydroperoxides and elevated the activities of SOD and CAT and the levels of reduced GSH in the liver, brain, kidney and intestine significantly compared to unsupplemented alcohol treated rats. Cassia auriculata leaf extract treatment restored the serum vitamin E, and vitamin C levels also to near those of the experimental control animals. Our data indicate that supplementation with Cassia auriculata leaf extract can offer protection against free radical mediated oxidative stress in experimental hepatotoxicity. In addition, histopathological studies of the liver and brain confirmed the beneficial role of Cassia auriculata leaf extract.  相似文献   

15.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

16.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

17.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

18.
The effect of groundnut oil on blood glucose, lipid profile, lipid peroxidation, and antioxidant status in streptozotocin-diabetic rats was investigated and compared with diabetic and drug-treated rats. Diabetes was induced in adult female Wistar rats by intraperitoneal administration of streptozotocin (40 mg/kg b-wt). Normal and diabetic rats were fed an oil-free diet containing 2 percent oil supplemented with groundnut oil (6g per 94g diet), to give 8 percent oil content, for 42 days. Diabetic rats had elevated levels of glucose (322.61 ± 9.49), glycosylated hemoglobin (HbA1c), vitamin E, thiobarbituric acid reactive substances (TBARS), and lipid hydroperoxides (HP) and decreased levels of hemoglobin (Hb), vitamin C, and reduced glutathione (GSH). An increase in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase and a decrease in hexokinase activity also were observed in the liver and kidney. When diabetic rats were fed groundnut oil, a significant reduction in glucose (244.04 ± 11.66), HbA1c, TBARS, HP levels, and glucose-6-phosphatase and fructose-1,6-bisphosphatase activities and an elevation in Hb, vitamin E, GSH levels, and hexokinase activity were observed. Diabetic rats had elevated total cholesterol (TC), VLDL-cholesterol, LDL-cholesterol, and triglycerides (TG) and decreased HDL-cholesterol. Diabetic rats fed groundnut oil showed a small but significant reduction in TC, VLDL-C, LDL-C, and TG and an elevation in HDL-C. Groundnut oil consumption slightly but significantly decreases the blood glucose, HbA1c, lipid peroxidation, and lipid profile and increases antioxidant levels in diabetic rats.  相似文献   

19.
The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.  相似文献   

20.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号