首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1996,135(5):1229-1237
Ssa1/2p, members of one of the yeast cytosolic hsp70 subfamilies, have been implicated in the translocation of secretory proteins into the lumen of the ER. The involvement of these hsp70s in translocation was tested directly by examining the effect of immunodepleting Ssa1/2p from yeast cytosol and subsequently testing the cytosol for its ability to support co- and post-translational translocation of prepro-alpha- factor. Depletion of Ssa1/2p had no effect on the efficiency of translocation in this in vitro assay. The system was used to examine the effect of the absence of Ssa1/2p on two other putative hsp70 functions: cotranslational folding of nascent luciferase and refolding of denatured luciferase. Depletion of Ssa1/2p had no effect on the ability of the yeast lysate to synthesize enzymatically active luciferase, but had a dramatic effect on the ability of the lysate to refold chemically denatured luciferase. These results demonstrate, for the first time, the refolding activity of Ssa1/2p in the context of the yeast cytosol, and define refolding activity as a chaperone function specific to Ssa1/2p, aprt from other cytosolic hsp70s. They also suggest that Ssa1/2p do not play a significant role in chaperoning the folding of nascent polypeptides. The implications of these findings for Ssa1/2p activity on their proposed role in the process of translocation are discussed.  相似文献   

2.
We have previously shown that fully synthesized prepro-alpha-factor (pp alpha F), the precursor for the yeast pheromone alpha-factor, can be translocated posttranslationally across yeast rough microsomal (RM) membranes from a soluble, ribosome-free pool. We show here that this is not the case for translocation of pp alpha F across mammalian RM. Rather we found that a small amount of translocation of full-length pp alpha F is observed, but is solely due to polypeptide chains that were still ribosome bound and covalently attached to tRNA, i.e., not terminated. In addition, both signal recognition particle (SRP) and SRP receptor are required, i.e., the same targeting machinery that is normally responsible for the coupling between protein synthesis and translocation. Thus, the molecular requirements for targeting are distinct from posttranslational translocation across yeast RM. As termination is generally regarded as part of translation, the translocation of full-length pp alpha F across mammalian RM does not occur "posttranslationally," albeit independent of elongation. Most other proteins for which posttranslational translocation across mammalian RM was previously claimed fall into the same category in that ribosome attachment as peptidyl-tRNA is required. To clearly separate these two distinct processes, we suggest that the term posttranslational be reserved for those processes that occur in the complete absence of the translational machinery. We propose the term "ribosome-coupled translocation" for the events described here.  相似文献   

3.
The transfer of precursor proteins through the membrane of the rough endoplasmic reticulum (ER) in yeast is strictly dependent on the presence of ATP. Since Kar2p (the yeast homologue of mammalian BiP) is required for translocation, and is an ATP binding protein, an ATP transport system must be coupled to the translocation machinery of the ER. We report here the characterization of a transport system for ATP in vesicles derived from yeast ER. ATP uptake into vesicles was found to be saturable in the micromolar range with a Km of 1 x 10(-5) M. ATP transport into ER vesicles was specifically inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a stilbene derivative known to inhibit a number of other anion transporters, and by 3'-O-(4-benzoyl)benzoyl-ATP (Bz2-ATP). Inhibition of ATP uptake into yeast microsomes by DIDS and Bz2-ATP blocked protein translocation in vitro measured co- as well as post-translationally. The inhibitory effect of DIDS on translocation was prevented by coincubation with ATP. Moreover, selective membrane permeabilization, allowing ATP access to the lumen, restored translocation activity to DIDS-treated membranes. These results demonstrate that translocation requires a DIDS and Bz2-ATP-sensitive component whose function is to transport ATP to the lumen of the ER. These findings are consistent with current models of protein translocation in yeast which stipulate the participation of Kar2p in the translocation process.  相似文献   

4.
In vitro, efficient translocation and glycosylation of the precursor of yeast alpha-factor can take place post-translationally. This property of prepro-alpha-factor appears to be unique as it could not be extended to other yeast protein precursors such as preinvertase or preprocarboxypeptidase Y. In order to determine if specific domains of prepro-alpha-factor were involved in post-translational translocation, we carried out a series of experiments in which major domains were either deleted or fused onto reporter proteins. Fusion of various domains of prepro-alpha-factor onto the reporter protein alpha-globin did not allow post-translational translocation to occur in the yeast in vitro system. Prepro-alpha-factor retained its ability to be post-translationally translocated when parts or all of the pro region were deleted. Removal of the C-terminal repeats containing mature alpha-factor had the most profound influence as post-translational translocation decreased in proportion to the number of repeats deleted. Taken together, these results suggest that efficient post-translational translocation requires a signal sequence and the four C-terminal repeats. There does not however, appear to be specific information contained within the C-terminus, as their presence in fusion did not enable the post-translational translocation of reporter proteins. Lastly, the ability to post-translationally translocate radiochemically pure prepro-alpha-factor that had been isolated by immuno-affinity chromatography required the addition of a yeast lysate fraction. Moreover, post-translational translocation is a function of the microsomal membrane of yeast microsomes and not of a factor peculiar to the yeast lysate, as reticulocyte lysate supported this as well.  相似文献   

5.
Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα increases the translocation and insertion of Bax c-myc (an active form of Bax) into the outer membrane of yeast mitochondria. This is associated with an increase in cytochrome c (cyt c) release, reactive oxygen species production (ROS), mitochondrial network fragmentation and cell death. This cell death process is regulated, since it correlates with an increase in autophagy but not with plasma membrane permeabilization. The observed increase in Bax c-myc translocation and insertion by PKCα is not due to Bax c-myc phosphorylation, and the higher cell death observed is independent of the PKCα kinase activity. PKCα may therefore have functions other than its kinase activity that aid in Bax c-myc translocation and insertion into mitochondria. Together, these results give a mechanistic insight on apoptosis regulation by PKCα through regulation of Bax insertion into mitochondria.  相似文献   

6.
To investigate protein translocation in eukaryotes, we reconstituted a protein translocation system using the permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe. The precursor of a sex pheromone of Saccharomyces cerevisiae, prepro-alpha-factor, was translocated across the endoplasmic reticulum (ER) of S. pombe posttranslationally, and glycosylated to the same extent as in the ER of S. cerevisiae. This suggested that the size of N-linked core-oligosaccharide in the ER of S. pombe is similar to that in S. cerevisiae. This translocation into the ER of S. pombe was inhibited by puromycin, but the translocation in the P-cells of S. cerevisiae was not inhibited. This difference in sensitivity to puromycin was due to the membrane but not the cytosolic fraction. Our results suggested that the translocation machinery of S. pombe was sensitive to puromycin and different from that of S. cerevisiae.  相似文献   

7.
Firefly luciferase is imported into peroxisomes in insects, mammals, plants, and yeast, which implies that the mechanism of protein translocation into peroxisomes has been conserved during eukaryotic evolution. The carboxyl-terminal tripeptide serine-lysine-leucine in luciferase acts as a peroxisomal import signal in mammalian cells. We have investigated whether this tripeptide is also involved in translocation of firefly luciferase into peroxisomes in yeast (Saccharomyces cerevisiae). We show by gene fusion experiments that the carboxyl-terminal 104 amino acids of luciferase can direct a heterologous protein to yeast peroxisomes. Luciferase mutant proteins were tested for their ability to be imported into yeast peroxisomes in vivo. We demonstrate that mutations in the carboxyl-terminal serine-lysine-leucine tripeptide abolish translocation of the protein into yeast peroxisomes. However, when a passenger protein was tagged at its carboxyl terminus with this tripeptide the fusion protein did not go to peroxisomes. These results indicate that, in yeast, the tripeptide is necessary but not sufficient for peroxisomal import.  相似文献   

8.
Cer1p/Lhs1p/Ssi1p is a novel Hsp70-related protein that is important for the translocation of a subset of proteins into the yeast Saccharomyces cerevisiae endoplasmic reticulum. Cer1p has very limited amino acid identity to the hsp70 chaperone family in the N-terminal ATPase domain but lacks homology to the highly conserved hsp70 peptide binding domain. The role of Cer1p in protein folding and translocation was assessed. Deletion of CER1 slowed the folding of reduced pro-carboxypeptidase Y (pro-CPY) approximately twofold in yeast. In wild-type yeast under reducing conditions, pro-CPY can be found in a complex with Cer1p, while partially purified Cer1p is able to bind directly to peptides. Together, this suggests that Cer1p has a chaperoning activity required for proper refolding of denatured pro-CPY which is mediated by direct interaction with the unfolded polypeptide. Cer1p peptide binding and oligomerization could be disrupted by addition of ATP, confirming that Cer1p possesses a functional ATP binding site, much like Kar2p and other members of the hsp70 family. Interestingly, replacing the signal sequence of a CER1-dependent protein with that of a CER1-independent protein did not relieve the requirement of CER1 for import. This result suggests that an interaction with the mature portion of the protein also is important for the translocation role of Cer1p. The CER1 RNA levels increase at lower temperatures. In addition, the effects of deletion on folding and translocation are more severe at lower temperatures. Therefore, these results suggest that Cer1p provides an additional chaperoning activity in processes known to require Kar2p. However, there appears to be a greater requirement for Cer1p chaperone activity at lower temperatures.  相似文献   

9.
In vitro delivery of the diphtheria toxin catalytic (C) domain from the lumen of purified early endosomes to the external milieu requires the addition of both ATP and a cytosolic translocation factor (CTF) complex. Using the translocation of C-domain ADP-ribosyltransferase activity across the endosomal membrane as an assay, the CTF complex activity was 650-800-fold purified from human T cell and yeast extracts, respectively. The chaperonin heat shock protein (Hsp) 90 and thioredoxin reductase were identified by mass spectrometry sequencing in CTF complexes purified from both human T cell and yeast. Further analysis of the role played by these two proteins with specific inhibitors, both in the in vitro translocation assay and in intact cell toxicity assays, has demonstrated their essential role in the productive delivery of the C-domain from the lumen of early endosomes to the external milieu. These results confirm and extend earlier observations of diphtheria toxin C-domain unfolding and refolding that must occur before and after vesicle membrane translocation. In addition, results presented here demonstrate that thioredoxin reductase activity plays an essential role in the cytosolic release of the C-domain. Because analogous CTF complexes have been partially purified from mammalian and yeast cell extracts, results presented here suggest a common and fundamental mechanism for C-domain translocation across early endosomal membranes.  相似文献   

10.
We have determined that prepro-carboxypeptidase Y and a truncated form of pre-invertase can be translocated across the yeast microsomal membrane post-translationally in a homologous in vitro system. The yeast secretory protein prepro-alpha-factor which was previously shown to be an efficient posttranslational translocation substrate is therefore not unique in this regard, but rather the yeast ER protein translocation machinery is generally capable of accepting substrates from a ribosome-free, soluble pool. However, within our detection limits, full-length pre-invertase could not be translocated posttranslationally, but was translocated co-translationally. This indicates that not every fully synthesized pre-protein can use this pathway, presumably because normal or aberrant folding characteristics can interfere with translocation competence.  相似文献   

11.
We describe an in vitro system with all components derived from the yeast Saccharomyces cerevisiae that can translocate a yeast secretory protein across microsomal membranes. In vitro transcribed prepro-alpha-factor mRNA served to program a membrane-depleted yeast translation system. Translocation and core glycosylation of prepro-alpha-factor were observed when yeast microsomal membranes were added during or after translation. A membrane potential is not required for translocation. However, ATP is required for translocation and nonhydrolyzable analogues of ATP cannot serve as a substitute. These findings suggest that ATP hydrolysis may supply the energy required for translocation of proteins across the endoplasmic reticulum.  相似文献   

12.
Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor approximately 1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture.  相似文献   

13.
McClellan AJ  Brodsky JL 《Genetics》2000,156(2):501-512
The translocation of proteins across the yeast ER membrane requires ATP hydrolysis and the action of DnaK (hsp70) and DnaJ homologues. In Saccharomyces cerevisiae the cytosolic hsp70s that promote post-translational translocation are the products of the Ssa gene family. Ssa1p maintains secretory precursors in a translocation-competent state and interacts with Ydj1p, a DnaJ homologue. Although it has been proposed that Ydj1p stimulates the ATPase activity of Ssa1p to release preproteins and engineer translocation, support for this model is incomplete. To this end, mutations in the ATP-binding pocket of SSA1 were constructed and examined both in vivo and in vitro. Expression of the mutant Ssa1p's slows wild-type cell growth, is insufficient to support life in the absence of functional Ssa1p, and results in a dominant effect on post-translational translocation. The ATPase activity of the purified mutant proteins was not enhanced by Ydj1p and the mutant proteins could not bind an unfolded polypeptide substrate. Our data suggest that a productive interaction between Ssa1p and Ydj1p is required to promote protein translocation.  相似文献   

14.
The concentration dependence of the uptake rate of Cs+ in yeast at low pH is described by a cubic rate equation rather than by a quadratic rale equation. This points to the involvement of three sties in the translocation of Cs+ across the yeast cell membrane. The possibility that one of the three sites is only apparent due to interaction of Cs+ with the electrical double layer of the yeast cell membrane is also considered.  相似文献   

15.
The antitumor drug miltefosine has been recently approved as the first oral drug active against visceral leishmaniasis. We have previously identified the L. donovani miltefosine transporter (LdMT) as a P-type ATPase involved in phospholipid translocation at the plasma membrane of Leishmania parasites. Here we show that this protein is essential but not sufficient for the phospholipid translocation activity and, thus, for the potency of the drug. Based on recent findings in yeast, we have identified the putative beta subunit of LdMT, named LdRos3, as another protein factor required for the translocation activity. LdRos3 belongs to the CDC50/Lem3 family, proposed as likely beta subunits for P4-ATPases. The phenotype of LdRos3-defective parasites was identical to that of the LdMT-/-, including a defect in the uptake of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amino)-phosphatidylserine, generally considered as not affected in Lem3p-deficient yeast. Both LdMT and LdRos3 normally localized to the plasma membrane but were retained inside the endoplasmic reticulum in the absence of the other protein or when inactivating point mutations were introduced in LdMT. Modulating the expression levels of either protein independently, we show that any one of them could behave as the protein limiting the level of flippase activity. Thus, LdMT and LdRos3 seem to form part of the same translocation machinery that determines flippase activity and miltefosine sensitivity in Leishmania, further supporting the consideration of CDC50/Lem3 proteins as beta subunits required for the normal functioning of P4-ATPases.  相似文献   

16.
Hygromycin B is an unusual aminoglycoside antibiotic active against both prokaryotic and eukaryotic cells. Hygromycin B at 0.38 mM concentration completely halts yeast cell growth in rich media, presumably by preventing protein synthesis by cytoplasmic ribosomes. Polypeptide synthesis in cell-free extracts from rabbit reticulocytes, wheat germ and yeast is strongly blocked by low concentrations of hygromycin B. The antibiotic inhibits peptide chain elongation by yeast polysomes by preventing elongation factor EF-2-dependent translocation, although it does not affect either the formation of the EF-2-GTP-ribosome complex or the EF-2- and ribosome-dependent GTP hydrolysis which takes place uncoupled from translocation. The inhibition of translocation by hygromycin B might result from the stabilization of peptidyl-tRNA bound to the ribosomal acceptor site, since the stability of [3H]Phe-tRNA-EF-1-poly(U)-ribosome and [3H]Phe-tRNA-poly(U)-ribosome complexes is increased in the presence of hygromycin B. The inhibition of polyphenylalanine synthesis by reticulocyte ribosomes and enzymic translocation of peptidyl-tRNA by yeast polysomes can be reversed by increasing concentrations of EF-2 suggesting a relationship between the binding sites of EF-2 and hygromycin B on the ribosome. Neither non-enzymic translocation, that takes place in the presence of high potassium concentrations, nor the peptide bondforming step are affected by hygromycin B.  相似文献   

17.
Mason N  Ciufo LF  Brown JD 《The EMBO journal》2000,19(15):4164-4174
Signal recognition particle (SRP) targets proteins for co-translational insertion through or into the endoplasmic reticulum membrane. Mammalian SRP slows nascent chain elongation by the ribosome during targeting in vitro. This 'elongation arrest' activity requires the SRP9/14 subunit of the particle and interactions of the C-terminus of SRP14. We have purified SRP from Saccharomyces cerevisiae and demonstrated that it too has elongation arrest activity. A yeast SRP containing Srp14p truncated at its C-terminus (delta C29) did not maintain elongation arrest, was substantially deficient in promoting translocation and interfered with targeting by wild-type SRP. In vivo, this mutation conferred a constitutive defect in the coupling of protein translation and translocation and temperature-sensitive growth, but only a slight defect in protein translocation. In combination, these data indicate that the primary defect in SRP delta C29 is in elongation arrest, and that this is a physiologically important and conserved function of eukaryotic SRP.  相似文献   

18.
We reconstituted prepro-alpha-factor translocation and signal peptide processing using a yeast microsomal detergent soluble fraction formed into vesicles with soybean phospholipids. Reconstituted translocation required ATP, and was deficient when sec63 and kar2 (BiP) mutant cells were used as a source of membranes. Normal translocation was observed with vesicles reconstituted from a mixture of pure wild-type yeast BiP and a soluble fraction of kar2 mutant membranes. Two other heat-shock cognate (hsc) 70 homologs, yeast cytosolic hsc70 (Ssalp) and E. coli dnaK protein did not replace BiP. Conversely, BiP was not active under conditions where translocation into native ER vesicles required cytosolic hsc70. We conclude that cytosolic hsc70 and BiP serve noninterchangeable roles in polypeptide translocation, possibly because distinct, asymmetrically oriented membrane proteins are required to recruit each protein to opposing surfaces of the ER membrane.  相似文献   

19.
Insulin stimulates glucose transport in adipocytes by triggering translocation of GLUT4 glucose transporters to the plasma membrane (PM) and several Rabs including Rab10 have been implicated in this process. To delineate the molecular regulation of this pathway, we conducted a TBC/RabGAP overexpression screen in adipocytes. This identified TBC1D13 as a potent inhibitor of insulin-stimulated GLUT4 translocation without affecting other trafficking pathways. To determine the potential Rab substrate for TBC1D13 we conducted a yeast two-hybrid screen and found that the GTP bound forms of Rabs 1 and 10 specifically interacted with TBC1D13 but not with eight other TBC proteins. Surprisingly, a comprehensive in vitro screen for TBC1D13 GAP activity revealed Rab35 but not Rab10 as a specific substrate. TBC1D13 also displayed in vivo GAP activity towards Rab35. Overexpression of constitutively active Rab35 but not constitutively active Rab10 reversed the block in insulin-stimulated GLUT4 translocation observed with TBC1D13 overexpression. These studies implicate an important role for Rab35 in insulin-stimulated GLUT4 translocation in adipocytes.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1355-1363
Reconstituted proteoliposomes derived from solubilized yeast microsomes are able to translocate a secreted yeast mating pheromone precursor (Brodsky, J. L., S. Hamamoto, D. Feldheim, and R. Schekman. 1993. J. Cell Biol. 120:95-107). Reconstituted proteoliposomes prepared from strains with mutations in the SEC63 or KAR2 genes are defective for translocation; the kar2 defect can be overcome by the addition of purified BiP (encoded by the KAR2 gene). We now show that addition of BiP to wild-type reconstituted vesicles increases their translocation efficiency three-fold. To identify other ER components that are required for translocation, we purified a microsomal membrane protein complex that contains Sec63p. We found that the complex also includes BiP, Sec66p (gp31.5), and Sec67p (p23). The Sec63p complex restores translocation activity to reconstituted vesicles that are prepared from a sec63-1 strain, or from cells in which the SEC66 or SEC67 genes are disrupted. BiP dissociates from the complex when the purification is performed in the presence of ATP gamma S or when the starting membranes are from yeast containing the sec63-1 mutation. We conclude that the purified Sec63p complex is active and required for protein translocation, and that the association of BiP with the complex may be regulated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号