首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine physical-chemical aspects of bile salt-phospholipid interactions that could contribute to preferential phosphatidylcholine (PC) secretion into bile, we have compared transitions between vesicles and micelles in model systems containing taurocholate (TC) and either egg-yolk PC (EYPC), egg-yolk sphingomyelin (EYSM), buttermilk SM (BMSM) or dipalmitoyl PC (DPPC). Phase transitions from micelles to vesicles were observed at 4-fold dilution of serially diluted EYPC/TC systems, but not earlier than at 16-fold dilution of SM/TC or DPPC/TC systems, indicating lower concentrations of the detergent required for micellization in the case of SM or DPPC. Cryo-transmission electron microscopy of phase transitions initiated by addition of TC to phospholipid vesicles revealed extremely long SM-containing intermediate structures, but shorter EYPC-containing intermediate structures. Again, larger amounts of bile salt were required to induce phase transitions in the case of EYPC compared to SM. Sizes of TC-phospholipid micelles increased progressively upon increasing phospholipid contents in the rank order: DPPC-TC相似文献   

2.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

3.
M Masserini  E Freire 《Biochemistry》1987,26(1):237-242
The transfer of ganglioside GM1 from micelles to membranes and between different membrane populations has been examined by using a pyrene fatty acid derivative of the ganglioside. The transfer of gangliosides from micelles to membranes depends on the physical state as well as the molecular composition of the acceptor vesicles. At 30 degrees C, the transfer of micellar gangliosides to dipalmitoylphosphatidylcholine (DPPC) large unilameller vesicles (Tm = 41.3 degrees C) is characterized by a rate constant of 0.01 min-1; at 48 degrees C, however, the rate constant is 0.11 min-1. Below the phase transition temperature, the activation energy is 25 kcal/mol whereas above the phase transition it is 17 kcal/mol. Similar experiments performed with synaptic plasma membranes yielded a rate constant of 0.05 min-1 at 37 degrees C. The rate of transfer of ganglioside molecules, asymmetrically located on the outer layer of donor vesicles, to acceptor vesicles lacking ganglioside depends on the physical state of both the donor and acceptor vesicles. For the transfer of ganglioside from DPPC (donor) vesicles to dimyristoylphosphatidylcholine (DMPC) (acceptor) vesicles, the rates were essentially zero at 15 degrees C in which both vesicle populations were in the gel phase, 0.008 min-1 at 30 degrees C in which DPPC is in the gel phase and DMPC is in the fluid phase, and 0.031 min-1 at 48 degrees C in which both vesicle populations are in the fluid phase. The transfer of ganglioside from DPPC vesicles to synaptic plasma membranes was also dependent on the physical state of the donor vesicles and showed an inflection point at the phase transition temperature of DPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Gangliosides have been shown to function as cell surface receptors, as well as participating in cell growth, differentiation, and transformation. In spite of their multiple biological functions, relatively little is known about their structure and physical properties in membrane systems. The thermotropic and structural properties of ganglioside GM1 alone and in a binary system with 1,2-dipalmitoyl phosphatidylcholine (DPPC) have been investigated by differential scanning calorimetry (DSC) and x-ray diffraction. By DSC hydrated GM1 undergoes a broad endothermic transition TM = 26 degrees C (delta H = 1.7 kcal/mol GM1). X-ray diffraction below (-2 degrees C) and above (51 degrees C) this transition indicates a micellar structure with changes occurring only in the wide angle region of the diffraction pattern (relatively sharp reflection at 1/4.12 A-1 at -2 degrees C; more diffuse reflection at 1/4.41 A-1 at 51 degrees C). In hydrated binary mixtures with DPPC, incorporation of GM1 (0-30 mol%; zone 1) decreases the enthalpy of the DPPC pretransition at low molar compositions while increasing the TM of both the pre- and main transitions (limiting values, 39 and 44 degrees C, respectively). X-ray diffraction studies indicate the presence of a single bilayer gel phase in zone 1 that can undergo chain melting to an L alpha bilayer phase. A detailed hydration study of GM1 (5.7 mol %)/DPPC indicated a conversion of the DPPC bilayer gel phase to an infinite swelling system in zone 1 due to the presence of the negatively charged sialic acid moiety of GM1. At 30-61 mol % GM1 (zone 2), two calorimetric transitions are observed at 44 and 47 degrees C, suggesting the presence of two phases. The lower transition reflects the bilayer gel --> L alpha transition (zone 1), whereas the upper transition appears to be a consequence of the formation of a nonbilayer, micellar or hexagonal phase, although the structure of this phase has not been defined by x-ray diffraction. At > 61 mol % GM1 (zone 3) the calorimetric and phase behavior is dominated by the micelle-forming properties of GM1; the presence of mixed GM1/DPPC micellar phases is predicted.  相似文献   

5.
Large unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) were prepared by sonication and were fractionated by gel filtration on Sepharose Cl-2B in the size range from 180- to 380-A Stokes radii. Negatively stained electron micrographs of these preparations indicated the presence of unilamellar, spheroidal structures of the expected size. Fluorescence polarization of diphenylhexatriene, dissolved in the vesicles, revealed progressively broader phase transitions, shifted to lower temperatures for vesicles of decreasing sizes. The fractionated unilamellar vesicles and multilamellar vesicles of DPPC were reacted with human apolipoprotein A-I at 41 degrees C for periods from 1 to 120 h. The reaction mixtures were then passed through a Bio-Gel A-5m column to separate unreacted lipid vesicles and protein from micellar complexes of DPPC with apolipoprotein A-I. Smaller vesicles were much more reactive than larger vesicles or multilamellar vesicles with the apolipoprotein. This difference in reactivity was explained by the increasing bilayer curvature of smaller vesicles which changes the packing of DPPC molecules in the bilayer and facilitates its penetration by the apolipoprotein.  相似文献   

6.
S Almog  T Kushnir  S Nir  D Lichtenberg 《Biochemistry》1986,25(9):2597-2605
Dilution of mixed micellar dispersions of egg phosphatidylcholine (PC) and sodium cholate beyond a critical value results in formation of cholate-containing PC vesicles. The structure of the resultant vesicles and some mechanistic aspects of this process have been investigated by the use of light scattering and nuclear magnetic resonance techniques. The main findings and conclusions are the following: Both the state of aggregation (micellar or vesicular) and the apparent equilibrium size distribution of micelles or vesicles obtained by dilution of the PC-cholate mixed micellar dispersions are a function of the cholate to PC molar ratio in the mixed aggregates (micelles or vesicles). When this effective ratio (Re) is higher than 0.4, the dispersion is micellar, and the size of the mixed micelles increases with decreasing Re; when Re less than 0.3, the dispersion is essentially vesicular, and the mean hydrodynamic radius of the vesicles is an increasing function of Re; in dispersions with 0.3 less than Re less than 0.4, mixed micelles and vesicles coexist. Addition of cholate to vesicular dispersions, to Re values below 0.3, results in vesicle size growth through a concentration-independent lipid-exchange mechanism. Addition of cholate to higher Re values results in micellization (solubilization) of the vesicles. On the other hand, dilution of vesicular dispersions does not affect the size of the vesicles. Apparent equilibration of a mixed micellar dispersion following dilution to Re values below 0.3 is slow (many hours). The overall process involves a series of three subsequent categories of steps: (i) a rapid (approximately 1-2 min) prevesiculation equilibration of micellar sizes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
13C-NMR spectra have been obtained at 50.3 MHz for monoarachidoylphosphatidylcholine (MAPC) and dipalmitoylphosphatidylcholine (DPPC) dispersions from 25 degrees C to 55 degrees C and for DPPC polycrystals at 25 degrees C using the cross polarization/magic angle spinning technique. Differential scanning calorimetric studies on DPPC and MAPC dispersions show comparable lipid phase transitions with transition temperatures at 41 degrees C and 45 degrees C, respectively, and thus enable the comparison of thermal, structural and dynamic differences between these two systems at corresponding temperatures. Conformational-dependent 13C chemical shift studies on DPPC dispersions demonstrate not only the coexistence of the tilted gel (L beta') and liquid-crystalline (L alpha) phases in the rippled gel (P beta') phase, but also the presence of an intermediate third microscopic phase as evidenced by three resolvable peaks for omega - 1 methylene carbon signals at the temperature interval between Tp and Tm. By comparing chemical shifts of MAPC in the hydrocarbon chain region with those of DPPC at similar reduced temperatures, it can be concluded that the packings are perturbed markedly in the middle segment of the fatty acyl chain during the lamellar to micellar transition. However, terminal methylene and methyl groups of interdigitated MAPC lamellae were found to be more ordered than those of non-interdigitated DPPC bilayers in the gel state. Interestingly, the terminal methyl groups of MAPC in the micelles remain to be relatively ordered; in fact, they are more ordered than the corresponding acyl chain end of DPPC in the liquid-crystalline state. Analysis of data obtained from rotating frame proton spin-lattice relaxation measurements shows a highly mobile phosphocholine headgroup, a rigid carbonyl group and an ordered hydrocarbon chain for lamellar MAPC in the interdigitated state. Furthermore, results suggest that free rotations of the glycerol C2-C3 bond within MAPC molecules may occur in the interdigitated bilayer, whereas intramolecular exchange between two conformations of the glycerol backbone in DPPC become possible at temperatures close to the pretransition temperature. Without isotope enrichment, we conclude that high-resolution solid-state 13C-NMR is indeed a useful technique which can be employed to study the packing and dynamics of phospholipids.  相似文献   

8.
Lysobisphosphatidic acid (LBPA) can be regarded to represent a unique derivative of phosphatidylglycerol. This lipid is highly enriched in late endosomes where it can comprise up to 10-15 mol% of all lipids and in these membranes, LBPA appears to be segregated into microdomains. We studied the thermotropic behavior of pure dioleoyl-LBPA mono- and bilayers using Langmuir-lipid monolayers, electron microscopy, differential scanning calorimetry (DSC), and fluorescence spectroscopy. LBPA formed metastable, liquid-expanded monolayers at an air/buffer interface, and its compression isotherms lacked any indication for structural phase transitions. Neat LBPA formed multilamellar vesicles with no structural transitions or phase transitions between 10 and 80 degrees C at a pH range of 3.0-7.4. We then proceeded to study mixed LBPA/dipalmitoylphosphatidylcholine (DPPC) bilayers by DSC and fluorescence spectroscopy. Incorporating increasing amounts of LBPA (up to X(LBPA) (molar fraction)=0.10) decreased the co-operativity of the main transition for DPPC, and a decrease in the main phase transition as well as pretransition temperature of DPPC was observed yet with no effect on the enthalpy of this transition. In keeping with the DSC data for DPPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/LBPA mixed bilayers were more fluid, and no evidence for lateral phase segregation was observed. These results were confirmed using fluorescence microscopy of Langmuir-lipid films composed of POPC and LBPA up to X(LBPA)=0.50 with no evidence for lateral phase separation. As late endosomes are eminently acidic, we examined the effect of lowering pH on lateral organization of mixed PC/LBPA bilayers by DSC and fluorescence spectroscopy. Even at pH 3.0, we find no evidence of LBPA-induced microdomain formation at LBPA contents found in cellular organelles.  相似文献   

9.
The thermal properties of various mixtures of two nonionic surfactants, decyldimethylphosphine oxide (APO10) and dodecyldimethylphosphine oxide (APO12) and two phospholipids, dimyristoylphosphatidyl choline (DMPC) and dipalmitoylphosphatidyl choline (DPPC), were examined by differential scanning calorimetry at various mole fractions. The addition of APO12 to DMPC multilamellar vesicles lowered the temperature of the main transition, produced considerable broadening, and eliminated the pre-transition. Phase separation, as evidenced by the existence of a cloud point, T(cp), occurred when the mole fraction of APO12, with respect to DMPC was 0.58 and above. A small abrupt increase in heat capacity was observed at, or slightly above, the cloud point of APO12 and all mixed micelle solutions. It appeared that mixed micelles coexisted with mixed bilayers when the mole fraction was between 0.58 and 0.75 and perhaps as low as a mole ratio of 0.32. All of the mixtures, except APO12/DMPC, exhibited a clear endotherm below the temperature corresponding to the cloud point, which likely reflects the growth in micellar size. Overlapping chain length dependent endothermic peaks, perhaps resulting from reorganization and/or continued association of the micelles, were observed above the cloud point for all of the mixtures except for APO10/DMPC solutions. However, solutions of mixed micelles consisting of APO10/DMPC with mole fractions of surfactant between 0.81 and 0.93 portrayed a broad unidentified exotherm of about 2+/-1 kcal/mol, which was centered nearly 10-20 degrees C above the cloud point.  相似文献   

10.
The properties of sodium fusidate micelles were determined by a spectral shift technique, surface tension measurements, and ultracentrifugal analysis. The critical micellar concentrations, mean molecular areas, and apparent aggregation numbers were estimated as a function of the concentration of counterion (0.001-1.0 m Na(+)) at 20 degrees C. The critical micellar concentrations were studied over a temperature range of 10 degrees C to 40 degrees C at one counterion concentration (0.001 m Na(+)), and from these data the standard thermo-dynamic functions of micellization were calculated. The ability of sodium fusidate solutions to solubilize the insoluble swelling amphiphiles, lecithin and monoolein, was investigated, and the results were compared with the solubilizing properties of sodium taurocholate. The critical micellar concentrations of sodium fusidate approximated those of sodium taurocholate. The values fell in the range of 1.44-4.56 mm, varying with the technique used, counterion concentration, and temperature. The percentage of counterions bound to fusidate micelles in water, calculated from the log critical micellar concentration-log Na(+) curve, was estimated to be negligible, which compares with sodium taurocholate micelles. The critical micellar concentration of sodium fusidate exhibited a minimum at 20 degrees C, a phenomenon observed with other ionic detergents and with bile salts. Micelle formation in sodium fusidate solutions was shown to be primarily entropy-driven at 10 degrees and 20 degrees C, whereas at 30 degrees and 40 degrees C the enthalpy factor predominated. From the surface tension measurements the molecular areas of sodium fusidate and sodium taurocholate were calculated. The mean molecular area of fusidate was 101 A(2), whereas sodium taurocholate possessed a molecular area of 88 A(2). It was demonstrated that the sodium fusidate molecule, like a bile salt molecule, lies with its longitudinal axis horizontal at an air-water interface. The apparent aggregation number of sodium fusidate micelles increased from 5 to 16 as the concentration of counterion increased from 0.01 to 0.60 m Na(+). These values are slightly larger than the corresponding aggregation numbers of sodium taurocholate micelles.  相似文献   

11.
We modified classic equilibrium dialysis methodology to correct for dialysant dilution and Donnan effects, and have systematically studied how variations in total lipid concentration, bile salt (taurocholate):lecithin (egg yolk) ratio, and cholesterol content influence inter-mixed micellar/vesicular (non-lecithin-associated) concentrations (IMC) of bile salts (BS) in model bile. To simulate large volumes of dialysant, the total volume (1 ml) of model bile was exchanged nine times during dialysis. When equilibrium was reached, dialysate BS concentrations plateaued, and initial and final BS concentrations in the dialysant were identical. After corrections for Donnan effects, IMC values were appreciably lower than final dialysate BS concentrations. Quasielastic light scattering was used to validate these IMC values by demonstrating that lipid particle sizes and mean scattered light intensities did not vary when model biles were diluted with aqueous BS solutions of the appropriate IMC. Micelles and vesicles were separated from cholesterol-supersaturated model bile, utilizing high performance gel chromatography with an eluant containing the IMC. Upon rechromatography of micelles and vesicles using an identical IMC, there was no net transfer of lipid between micelles and vesicles. To simulate dilution during gel filtration, model biles were diluted with 10 mM Na cholate, the prevailing literature eluant, resulting in net transfer of lipid between micelles and vesicles, the direction of which depended upon total lipid concentration and BS/lecithin ratio. Using the present methodology, we demonstrated that inter-mixed micellar/vesicular concentrations (IMC) values increased strongly (5 to 40 mM) with increases in both bile salt (BS):lecithin ratio and total lipid concentration, whereas variations in cholesterol content had no appreciable effects. For model biles with typical physiological biliary lipid compositions, IMC values exceeded the critical micellar concentration of the pure BS, implying that in cholesterol-supersaturated biles, simple BS micelles coexist with mixed BS/lecithin/cholesterol micelles and cholesterol/lecithin vesicles. We believe that this methodology allows the systematic evaluation of IMC values, with the ultimate aim of accurately separating micellar, vesicular, and potential other cholesterol-carrying particles from native bile.  相似文献   

12.
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems.  相似文献   

13.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The mode of interaction of aqueous dispersions of phospholipid vesicles is investigated. The vesicles (average diameter 950 A) are prepared from total lipid extracts of Escherichia coli composed of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. One type of vesicle contains trans-delta 9-octadecenoate, the other type trans-delta 9-hexadecenoate as predominant acyl chain component. The vesicles show order in equilibrium disorder transitions at transition temperatures, Tt = 42 degrees C and Tt = 29 degrees C, respectively. A mixture of these vesicles is incubated at 45 degrees C and lipid transfer is studied as a function of time using the phase transition as an indicator. The system reveals the following properties: Lipids are transferred between the two vesicle types giving rise to a vesicle population where both lipid components are homogeneously mixed. Lipid transfer is asymmetric, i.e. trans-delta 9-hexadecenoate-containing lipid molecules appear more rapidly in the trans-delta 9-octadecenoate-containing vesicles than vice versa. At a given molar ratio of the two types of vesicles the rate of lipid transfer is independent of the total vesicle concentration. It is concluded that lipid exchange through the water phase by way of single molecules or micelles is the mode of communication of these negatively charged lipid vesicles.  相似文献   

15.
Stepwise dilution of lipid-surfactant mixed micelles first results in extraction of surfactant from the mixed micelles into the aqueous medium. Subsequently mixed micelles transform into vesicles, within a range of compositions that corresponds to equilibrium coexistence between these two types of aggregates. Further dilution results in extraction of surfactant from the resultant mixed vesicles. In the present study, we have investigated the heat evolution of these processes, as they occur in mixed systems composed of egg phosphatidylcholine (PC) and the nonionic surfactant octylglucoside (OG). A combined use of isothermal titration calorimetry (ITC) and photon correlation spectroscopy (PCS), capable of monitoring phase transformations, revealed that 1) The sum of all of the studied processes (i.e., extraction of OG from mixed micelles and vesicles and the phase transformation) is isocaloric at approximately 40 degrees C throughout the whole dilution. At lower temperatures, all of the dilution steps are exothermic, whereas at higher temperatures all of them are endothermic. 2) At all temperatures, the absolute value of the heat associated with each dilution step within the range of coexistence of micelles and vesicles is almost constant and larger than in either the micellar or the vesicular range. We give an interpretation of these calorimetric data in terms of the relationship between the composition of the mixed aggregates Re and the aqueous concentration of surfactant monomers Dw. Assuming that the main contribution to the heat evolution is due to extraction of surfactant from mixed aggregates to the aqueous solution, we deduce the relationship Dw(Re) characterizing the system over the whole range of compositions. We find that, in accord with thermodynamic expectations, Dw is almost constant throughout the range of coexistence of mixed micelles and vesicles.  相似文献   

16.
Biliary cholesterol/phospholipid vesicles play an important role in the pathogenesis of gallstone disease. A prerequisite for the study of the lipid composition and stability of these vesicles is a reliable method to quantify the amount of vesicular lipid. In the present report we show that NMR can be used to determine the distribution of biliary lecithin between the micellar and vesicular phases. The relatively large size of the vesicles leads to such a broadening of the lipid resonances that they are no longer visible in high resolution 1H-NMR spectra. Since micelles are much smaller, lipid present in the micellar phase does give rise to sharp peaks in 1H-NMR spectra. Micellar lecithin can easily be quantified in these spectra. The resonances of cholesterol are masked by the closely related bile acid that is present in a much higher concentration. By determining the difference between chemically and NMR estimated lecithin, the distribution of this phospholipid between the micellar phase and vesicular phase can be assessed. We have compared the results of NMR with gel permeation and density gradient ultracentrifugation. Using standard fractionation conditions, both gel permeation and density gradient ultracentrifugation lead to an underestimation of vesicular lecithin, the difference being minor at relatively high total lipid concentrations (10 g/dl) but large in diluted model bile. We conclude that 1H-NMR can be used to determine the distribution of lecithin in model bile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The interaction of the probe diS-C3-(5) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using fluorescence and differential scanning calorimetry (DSC). The partition coefficients (K) of the probe for the lipid and the aqueous phase (in terms of molar part units) were (1.20 +/- 0.4) X 10(6) at 45 degrees C and (0.50 +/- 0.07) X 10(6) at 23 and 36 degrees C. In terms of volume concentration units, these values correspond to Kp = (2.88 +/- 0.10) X 10(4) and Kp = (1.20 +/- 0.17) X 10(4), respectively. DSC thermograms were practically identical both for large unilamellar and multilamellar liposomes. The main transition peak remained practically unchanged over the entire range of the probe concentrations used. The pretransition could be observed up to maximal probe concentrations applied and it widened and shifted from 35.4 degrees C in pure DPPC to approximately 32 degrees C at a probe/lipid ratio of 0.027. These results suggest that in both quasicrystalline and liquid crystalline lipid bilayers the probe molecules are included in "defects" between structurally ordered microregions (microdomains or clusters). The dependence of the fluorescence response on the transmembrane potential in a suspension of unilamellar DPPC vesicles suggest that the equilibrium thermodynamic model is valid for liquid crystalline bilayers.  相似文献   

18.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

19.
J Zeng  K E Smith    P L Chong 《Biophysical journal》1993,65(4):1404-1414
6-Carboxyfluorescein was employed to examine the effect of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles. Proton permeability was measured by monitoring the decrease of 6-carboxyfluorescein fluorescence after a pH gradient from 3.5 (outside the vesicle) to 8.0 (inside the vesicle) was established. At 20 degrees C and below 1.2 M ethanol, the fluorescence decrease is best described by a single exponential function. Above 1.2 M ethanol, the intensity decrease is better described by a two-exponential decay law. Using the fitted rate constants and the vesicle radii determined from light-scattering measurements, the proton permeability coefficient, P, in DPPC vesicles was calculated as a function of ethanol concentration. At 20 degrees C, P increases monotonically with increasing ethanol content up to 1.0 M, followed by an abrupt increase at 1.2 M. The vesicle size also exhibits a sudden increase at around 1.2 M ethanol, which has been shown to result from vesicle aggregation rather than vesicle fusion. The abrupt increases in P and in vesicle size occur at the concentration region close to the critical ethanol concentration for the formation of the fully interdigitated gel state of DPPC. At 14 degrees C, the abrupt change in P shifts to 1.9-2.0 M ethanol, completely in accordance with the ethanol-temperature phase diagram of interdigitated DPPC. Effects of methanol and benzyl alcohol on lipid interdigitation have also been examined. At 20 degrees C, DPPC large unilamellar vesicles exhibit a dramatic change in P at 3 M methanol and at 40 mM benzyl alcohol. These concentrations come close to the critical methanol and benzyl alcohol concentrations for the formation of fully interdigitated DPPC structures determined previously by others. It can be concluded that proton permeability increases dramatically as DPPC is transformed from the noninterdigitated gel to the fully interdigitated gel state by high concentrations of alcohol. This marked increase in proton permeability can be attributed to the combined effect of the changes in membrane thickness and surface charge density, due to the ethanol-induced lipid interdigitation. The possible effects of the increased proton permeability caused by ingested ethanol on gastric mucosal membranes are discussed.  相似文献   

20.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号