首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study of the DNA repair and genome stability in plants is directly dependent on the availability of an easy, inexpensive, and reliable assay. Marker gene-based homologous recombination (HR) assays were introduced more than a decade ago and have been intensively used ever since. Here, we compared several transgenic Arabidopsis and tobacco lines that carried in their genome the luciferase (LUC) or the beta-glucoronidase (uidA or GUS) substrates for HR. The average recombination frequency detected with the luciferase transgene was nearly 9.0-fold higher in Arabidopsis and 12.4-fold higher in tobacco plants. Importantly, both transgenes were under the control of 35S promoter and had similar expression levels throughout the plants. Irradiation with UVC increased the HR frequency similarly in both transgenes. The actual difference in the frequency of HR in Arabidopsis and tobacco possibly results from differing sensitivity to detection of transgene activity. Thus, we could suggest that luciferase recombination assay, due to its higher sensitivity, should be the assay of choice when plant genome stability is studied.  相似文献   

2.
Ionizing radiation (IR) is a known mutagen responsible for causing DNA strand breaks in all living organisms. Strand breaks thus created can be repaired by different mechanisms, including homologous recombination (HR), one of the key mechanisms maintaining genome stability [A. Britt, DNA damage and repair in plants, Annu. Rev. Plant. Phys. Plant Mol. Biol., 45 (1996) 75-100; H. Puchta, B. Hohn, From centiMorgans to basepairs: homologous recombination in plants, Trends Plant Sci., 1 (1996) 340-348.]. Acute or chronic exposure to IR may have different influences on the genome integrity. Although in a radioactively contaminated environment plants are mostly exposed to chronic pollution, evaluation of both kinds of influences is important. Estimation of the frequency of HR in the exposed plants may serve as an indication of genome stability.We used previously generated Arabidopsis thaliana and Nicotiana tabacum plants, transgenic for non-active versions of the beta-glucoronidase gene (uidA) [P. Swoboda, S. Gal, B. Hohn, H. Puchta, Intrachromosomal homologous recombination in whole plants, EMBO J., 13 (1994) 484-489; H. Puchta, P. Swoboda, B. Hohn, Induction of homologous DNA recombination in whole plants, Plant, 7 (1995) 203-210.] serving as a recombination substrate, to study the influence of acute and chronic exposure to IR on the level of HR as example of genome stability in plants. Exposure of seeds and seedlings to 0.1 to 10.0 Gy 60Co resulted in increased HR frequency, although the effect was more pronounced in seedlings. For the study of the influence of chronic exposure to IR, plants were grown on two chemically different types of soils, each artificially contaminated with equal amounts of 137Cs. We observed a strong and significant correlation between the frequency of HR in plants, the radioactivity of the soil samples and the doses of radiation absorbed by plants (in all cases r0.9, n=6, P<0.05). In addition, we noted that plants grown in soils with different chemical composition, but equal radioactivity, exhibited different levels of HR, dependent upon the absorbed dose of radiation. Remarkably, we observed a much higher frequency of HR in plants exposed to chronic irradiation when compared to acutely irradiated plants. Although acute application of 0.1-0.5 Gy did not lead to an increase of frequency of HR, the chronic exposure of the plants to several orders of magnitude lower dose of 200 muGy led to a 5-6-fold induction of the frequency of HR as compared to the control.  相似文献   

3.
The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecQ is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in Arabidopsis. Here we report on the functional analysis of the Arabidopsis RecQl4A gene. Ectopic expression of Arabidopsis RecQl4A in yeast RecQ-deficient cells suppressed their hypersensitivity to the DNA-damaging drug methyl methanesulfonate (MMS) and enhanced their rate of homologous recombination (HR). Analysis of three recQl4A mutant alleles revealed no obvious developmental defects or telomere deregulation in plants grown under standard growth conditions. Compared with wild-type Arabidopsis, the recQl4A mutant seedlings were found to be hypersensitive to UV light and MMS, and more resistant to mitomycin C. The average frequency of intrachromosomal HR in recQl4A mutant plants was increased 7.5-fold over that observed in wild-type plants. The data reveal roles for Arabidopsis RecQl4A in maintenance of genome stability by modulation of the DNA damage response and suppression of HR.  相似文献   

4.
Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight of soybean and produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced optimally at 18 degrees C whereas no detectable synthesis occurs at 28 degrees C. We investigated the impact of temperature on PG4180 during compatible and incompatible interactions with soybean and tobacco plants, respectively. After spray inoculation, PG4180 caused typical bacterial blight symptoms on soybean plants when the bacteria were grown at 18 degrees C prior to inoculation but not when derived from cultures grown at 28 degrees C. The disease outcome was quantified by determination of bacterial populations in planta. The temperature effect was not observed when PG4180 was artificially infiltrated into soybean leaves, indicating that the pre-inoculation temperature and phytotoxin synthesis were important for bacterial invasion via natural plant openings. In the incompatible interaction, PG4180 elicited the hypersensitive response (HR) on tobacco plants regardless of the bacterial pre-inoculation temperature. However, the HR was significantly delayed when tobacco plants were treated with cells of the CFA-overproducing derivative, PG4180.N9, which were derived from cultures grown at 18 degrees C, compared with parallels incubated at 28 degrees C. CFA biosynthesis by PG4180.N9 was optimal at 18 degrees C and negligible at 28 degrees C. The impact of CFA synthesis on the HR was studied with different growth media, mutants, and transconjugants of PG4180, indicating that the amount of synthesized CFA but not that of COR influenced the outcome of the HR. Feeding experiments with purified coronafacoyl compounds suggested that the observed delay of the HR was mediated by CFA, shedding further light on CFA's putative role as a molecular mimic of the plant signaling molecule, jasmonic acid.  相似文献   

5.
Phalaenopsis orchids are among the most valuable potted flowering crops commercially produced throughout the world because of their long flower life and ease of crop scheduling to meet specific market dates. During commercial production, Phalaenopsis are usually grown at an air temperature > or =28 degrees C to inhibit flower initiation, and a cooler night than day temperature regimen (e.g. 25/20 degrees C day/night) is used to induce flowering. However, the specific effect of day and night temperature on flower initiation has not been well described, and the reported requirement for a diurnal temperature fluctuation to elicit flowering is unclear. Two Phalaenopsis clones were grown in glass greenhouse compartments with constant temperature set points of 14, 17, 20, 23, 26, or 29 degrees C and fluctuating day/night (12 h/12 h) temperatures of 20/14, 23/17, 26/14, 26/20, 29/17, or 29/23 degrees C. The photoperiod was 12 h, and the maximum irradiance was controlled to < or =150 micromol m(-2) s(-1). After 20 weeks, > or =80% of plants of both clones had a visible inflorescence when grown at constant 14, 17, 20, or 23 degrees C and at fluctuating day/night temperatures of 20/14 degrees C or 23/17 degrees C. None of the plants were reproductive within 20 weeks when grown at a constant 29 degrees C or at 29/17 degrees C or 29/23 degrees C day/night temperature regimens. The number of inflorescences per plant and the number of flower buds on the first inflorescence were greatest when the average daily temperature was 14 degrees C or 17 degrees C. These results indicate that a day/night fluctuation in temperature is not required for inflorescence initiation in these two Phalaenopsis clones. Furthermore, the inhibition of flowering when the day temperature was 29 degrees C and the night temperature was 17 degrees C or 23 degrees C suggests that a warm day temperature inhibits flower initiation in Phalaenopsis.  相似文献   

6.
7.
To determine the thermosensitive periods and physiological processes in tomato flowers exposed to moderately elevated temperatures, tomato plants (Lycopersicon esculentum Mill., cv. NC 8288) were grown at 28/22 degrees C or 32/26 degrees C day/night temperature regimes and then transferred to the opposite regime for 0-15 d before or 0-24 h after anthesis. For plants initially grown at 28/22 degrees C, moderate temperature stress before anthesis decreased the percentage of fruit set per plant, but did not clarify the thermosensitive period. The same level of stress did not significantly reduce fruit set when applied immediately after anthesis. For plants initially grown at 32/26 degrees C, fruit set was completely prevented unless a relief period of more than 5 d was provided before anthesis. The same level of stress relief for 3-24 h after anthesis also increased fruit set. Plants were most sensitive to 32/26 degrees C temperatures 7-15 d before anthesis. Microscopic investigation of anthers in plants grown continuously at high temperature indicated disruption of development in the pollen, endothecium, epidermis, and stomium. This disruption was reduced, but still observable in plants relieved from high temperature for 10 d before anthesis.  相似文献   

8.
董丽丽  席贻龙  张雷 《应用生态学报》2006,17(12):2417-2420
在4个温度(15 ℃、20 ℃、25 ℃和30 ℃)下对4个不同生化遗传特征的萼花臂尾轮虫克隆(A、B、C和D)所产幼体的耐饥饿时间及其与温度、轮虫个体大小和卵大小等的关系进行研究.结果表明,15 ℃下克隆B幼体耐饥饿时间最短,为45.67 h;20 ℃和25 ℃下克隆C幼体耐饥饿时间均最长,分别为61.33 h和72.01 h;30 ℃下克隆A幼体耐饥饿时间最长,为40.11 h.4个温度间,克隆A轮虫幼体的耐饥饿时间在15 ℃下最长,克隆B和C轮虫幼体的耐饥饿时间在30 ℃下均最短,克隆D轮虫幼体的耐饥饿时间随培养温度的升高而逐步显著缩短.4个克隆轮虫的幼体耐饥饿时间均与温度呈显著负相关关系.克隆A轮虫的幼体耐饥饿时间还与卵体积呈显著负相关,克隆C相反;克隆B和克隆D轮虫幼体耐饥饿时间与个体体积呈显著正相关关系.  相似文献   

9.
Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl3 and LaCl3 leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl3 and LaCl3 had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl3 showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl3 can be effectively used to improve quantity and quality of transgene integrations.  相似文献   

10.
Here we analyzed the influence of salt stress on plant genome stability. Homologous recombination events were detected in transgenic Arabidopsis plants that carried in their genome a beta-glucuronidase recombination marker. Recombination events were scored as blue sectors using a stereo microscope. Exposure to 50 mM salt resulted in a 3.0-fold increase in recombination frequency. To analyze the organ and tissue specificity of recombination events, we examined cross-sections of leaves, stems and roots. We found that nearly 30% of recombination events in plants grown under normal conditions and nearly 50% of events in plants grown on salt were undetected by the conventional method. Most of the recombination events represented a cluster/group of cells (12 on average), although events with single cells were also detected. Recombination events were very frequent in leaf mesophyll cells. On average, individual recombination events located on leaves contained more cells than events located on roots or stems. Analysis of recombination events in cross-sectioned tissue of salt-treated plants revealed a shift in the distribution of recombination events towards the vascular tissue. We discuss the significance of the finding for plant stress physiology.  相似文献   

11.
Plant genome modification by homologous recombination   总被引:11,自引:0,他引:11  
The mechanisms and frequencies of various types of homologous recombination (HR) have been studied in plants for several years. However, the application of techniques involving HR for precise genome modification is still not routine. The low frequency of HR remains the major obstacle but recent progress in gene targeting in Arabidopsis and rice, as well as accumulating knowledge on the regulation of recombination levels, is an encouraging sign of the further development of HR-based approaches for genome engineering in plants.  相似文献   

12.
13.
Yao Y  Kovalchuk I 《Mutation research》2011,707(1-2):61-66
In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.  相似文献   

14.
The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa , monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)] B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of ~200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F1 and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced ~480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.  相似文献   

15.
The hypersensitive response (HR) triggered on Nicotiana edwardsonii by tobacco mosaic virus was studied using a modified viral genome that directed expression of the green fluorescent protein. Inoculated plants were initially incubated at 32 degrees C to inhibit the N gene-mediated HR. Transfer to 20 degrees C initiated the HR, and fluorescent infection foci were monitored for early HR-associated events. Membrane damage, which preceded visible cell collapse by more than 3 h, was accompanied by a transient restriction of the xylem within infection sites. Following cell collapse and the rapid desiccation of tissue undergoing the HR, isolated, infected cells were detected at the margin of necrotic lesions. These virus-infected cells were able to reinitiate infection on transfer to 32 degrees C, however, if maintained at 20 degrees C they eventually died. The results indicate that the tobacco mosaic virus-induced HR is a two-phase process with an early stage culminating in rapid cell collapse and tissue desiccation followed by a more extended period during which the remaining infected cells are eliminated.  相似文献   

16.
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis.

This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.  相似文献   

17.
18.
The distribution of antioxidants between bundle sheath and mesophyll cells of maize leaves was analysed in plants grown at 20 degrees C, 18 degrees C and 15 degrees C. The purity of the isolated bundle sheath and mesophyll fractions was determined using compartment-specific marker enzymes. In plants grown at 15 degrees C, ascorbate peroxidase, CuZn-superoxide dismutase (CuZn-SOD) and monodehydroascorbate reductase activities were increased in the bundle sheath cells, and glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were enhanced in the mesophyll cells. SOD was absent from the mesophyll of plants grown at 20 degrees C but an Fe-SOD activity was found in the mesophyll of plants grown at 15 degrees C. Foliar Mn-SOD activities were decreased at 15 degrees C compared to 20 degrees C. Catalase was undetectable in the mesophyll extracts of plants grown at 15 degrees C. Ascorbate and glutathione contents were considerably higher in the mesophyll than the bundle sheath fractions of plants grown at 20 degrees C. The ratios of reduced to oxidized forms of these antioxidants were significantly decreased in the bundle sheath, but increased in the mesophyll of leaves grown at 15 degrees C. Foliar H2O2 accumulated at 15 degrees C compared to 20 degrees C. Most of the foliar H2O2 was localized in the mesophyll tissues at all growth temperatures. The differential distribution of antioxidants between leaf bundle sheath and mesophyll tissues, observed at 20 degrees C, is even more pronounced when plants are grown at 15 degrees C and may contribute to the extreme sensitivity of maize to low temperatures.  相似文献   

19.
Multiple pathways for Cre/lox-mediated recombination in plastids   总被引:13,自引:0,他引:13  
Plastid transformation technology involves the insertion by homologous recombination and subsequent amplification of plastid transgenes to approximately 10 000 genome copies per leaf cell. Selection of transformed genomes is achieved using a selectable antibiotic resistance marker that has no subsequent role in the transformed line. We report here a feasibility study in the model plant tobacco, to test the heterologous Cre/lox recombination system for antibiotic marker gene removal from plastids. To study its efficiency, a green fluorescent protein reporter gene activation assay was utilized that allowed visual observation of marker excision after delivery of Cre to plastids. Using a combination of in vivo fluorescence activation and molecular assays, we show that transgene excision occurs completely from all plastid genomes early in plant development. Selectable marker-free transplastomic plants are obtained in the first seed generation, indicating a potential application of the Cre/lox system in plastid transformation technology. In addition to the predicted transgene excision event, two alternative pathways of Cre-mediated recombination were also observed. In one alternative pathway, the presence of Cre in plastids stimulated homologous recombination between a 117 bp transgene expression element and its cognate sequence in the plastid genome. The other alternative pathway uncovered a plastid genome 'hot spot' of recombination composed of multiple direct repeats of a 5 bp sequence motif, which recombined with lox independent of sequence homology. Both recombination pathways result in plastid genome deletions. However, the resultant plastid mutations are silent, and their study provides the first insights into tRNA accumulation and trans-splicing events in higher plant plastids.  相似文献   

20.
Boyko A  Greer M  Kovalchuk I 《Mutation research》2006,602(1-2):100-109
Environmental factors that damage DNA have various lengths of exposure and intensity levels. Although the results of increasing the intensity of a DNA damaging agent is often predictable, it is not clear whether the stage during development when the exposure is received has any influence on the amount of DNA damage. In this paper we analyzed the influence of UVB on the stability of Arabidopsis thaliana and the Nicotiana tabacum genomes. Our experiments showed that the acute exposure to UVB produces a significantly greater increase in homologous recombination frequency (HRF) and recombination rate (RR) compared with that produced by chronic exposure. The increase in HRF showed a positive correlation with UVB dose and a negative correlation with plant age. In other words, as the UVB dose was increased, there was a concomitant increase in HRF. Conversely, older plants had a lower HRF increase as compared to younger plants. Our experiments suggest that exposure to UVB makes the most significant impact on genome stability during the early stages of plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号