首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A recombinant strain of Saccharomyces cerevisiae secreting bacterial cellodextrinase was constructed. The Ruminococcus flavefaciens cellodextrinase gene (celA) was inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into a yeast-centromeric shuttle vector. Enzyme assays revealed growth-associated production of biologically active cellodextrinase by S. cerevisiae transformants.  相似文献   

2.
We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional system allowing easy and fast production of recombinant baculoviruses with high diversity and negligible background. Cloning of the desired DNA fragments or libraries is based on the recombination system of bacteriophage lambda. As an example of the utility of the vector, genes or cDNAs of 18 different proteins were cloned into pBVboostFG and expressed in different hosts. As a proof-of-principle of using the vector for library screening, a chromophoric Thr65-Tyr-Gly67-stretch of enhanced green fluorescent protein was destroyed and subsequently restored by novel PCR strategy and library screening. The pBVboostFG enables screening of genome-wide libraries, thus making it an efficient new platform technology for functional genomics.  相似文献   

3.
In this research, the encoding cDNA of growth hormone (GH) was cloned from the pituitary gland of great sturgeon Huso huso (three adults: two females and one male, 7–9 years old, 70–90 kg, reared in concrete ponds). In order to obtain the great sturgeon recombinant GH expression in Pichia pastoris, the mature encoding cDNA was first cloned in TA vector PTZ57R and then sequenced. After confirmation of the correct GH sequence, the GH coding sequence was subcloned into pHILS1 expression vector. The yeast Pichia pastoris GS115 strain was transformed with the expression plasmid. Results obtained from this study showed that great sturgeon GH recombinants were expressed upon induction with methanol and exported into the medium. The level of expression was examined using RNA analysis, SDS‐PAGE, and western blot analysis. RNA analysis of the recombinant strains showed a sharp, specific band in 800 bp. The specific band in transformants indicated the presence of GH RNA in the yeast. SDS‐PAGE and western blot analysis showed a specific 21 kDa band for the growth hormone. Culture conditions were optimized for pH = 6 and incubation time (after 24 h induction, peaking at 72 h) for maximal protein production. The results provide useful information for the future production of recombinant growth hormones in other sturgeon species.  相似文献   

4.

Objectives

To improve the quality of mutagenesis libraries in directed evolution strategy.

Results

In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells.

Conclusions

This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
  相似文献   

5.

Background  

Cloning of genes in expression libraries, such as the yeast two-hybrid system (Y2H), is based on the assumption that the loss of target genes is minimal, or at worst, managable. However, the expression of genes or gene fragments that are capable of interacting with E. coli or yeast gene products in these systems has been shown to be growth inhibitory, and therefore these clones are underrepresented (or completely lost) in the amplified library.  相似文献   

6.

Background  

Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast.  相似文献   

7.
A new cloning system is described, which allows the construction of large-insert fosmid libraries in Escherichia coli and the transfer of the recombinant libraries to the extreme thermophile Thermus thermophilus via natural transformation. Libraries are established in the thermophilic host by site-specific chromosomal insertion of the recombinant fosmids via single crossover or double crossover recombination at the T. thermophilus pyr locus. Comparative screening of a fosmid library constructed from genomic DNA from the thermophilic spirochaete, Spirochaeta thermophila, for clones expressing thermoactive xylanase activity revealed that 50% of the fosmids that conferred xylanase activity upon the corresponding T. thermophilus transformants did not give rise to xylanase-positive E. coli clones, indicating that significantly more S. thermophila genes are functionally expressed in T. thermophilus than in E. coli. The novel T. thermophilus host/vector system may be of value for the construction and functional screening of recombinant DNA libraries from individual thermophilic or extremely thermophilic organisms as well as from complex metagenomes isolated from thermophilic microbial communities.  相似文献   

8.

Background  

In testing for differential gene expression involving multiple serial analysis of gene expression (SAGE) libraries, it is critical to account for both between and within library variation. Several methods have been proposed, including the t test, t w test, and an overdispersed logistic regression approach. The merits of these tests, however, have not been fully evaluated. Questions still remain on whether further improvements can be made.  相似文献   

9.
Abstract Total mRNA from venom glands of newly emerged queen bees was reversely transcribed into cDNA and cloned into the EcoRI site of plasmid λgt11; cDNA library for bee venom was thus constructed. PCR technique was used to produce the melittin coding sequence from the cDNA library. A 87 bp product was produced and inserted into the EcoRI and PstI sites of the high level expression vector pBV220. Recombinant plasmid pBM95 was transformed into the competent cells of E.coli JM101. After screening transformants on LB medium with ampicilin, structure of the recombinant plasmid pBM95 from transformants was analyzed and melittin gene in pBM95 was sequenced. The cloned cDNA coding for honey bee melittin was obtained.  相似文献   

10.
The yeast Cryptococcus humicola has several attractive properties for practical applications such as in bioremediation and as a source of industrially useful enzymes and compounds. We have developed an autonomously replicating vector of C. humicola to improve its properties. We initially tried to isolate an autonomously replicating sequence (ARS) from genomic DNA by transformation using a genomic DNA library. We obtained a candidate plasmid vector harboring an ARS that gave high transformation efficiency. Southern blot analysis of transformants revealed the autonomous replication of the introduced vector in some transformants. However, the vector was not only variously altered in length but also linearized. PCR analysis indicated that a telomere-like sequence repeat (TTAGGGGG) n was added to the termini of linearized vector. Thus, we constructed an autonomously replicating linear vector having ten repeats of the telomere-like sequence at both ends. The vector transformed the yeast cells with high transformation efficiency (3230 CFU/μg of DNA), which was approximately 25-fold higher than that of a control vector lacking the repeats, and was autonomously replicated at a roughly constant size. The copy number was estimated to be less than one copy, and Ura+ mitotic stability varied widely among the transformants and was related to plasmid segregation efficiency.  相似文献   

11.

Background  

Over the last decades molecular biologic techniques have been developed to alter the genome and proteome of Tetrahymena thermophila thereby providing the basis for recombinant protein expression including functional human enzymes. The biotechnological potential of Tetrahymena has been proved in numerous publications, demonstrating fast growth, high biomass, fermentation in ordinary bacterial/yeast equipment, up-scalability, existence of cheap and chemical defined media. For these reasons Tetrahymena offers promising opportunities for the development of a high expression system. Yet optimised high yield strains with protease deficiency such as commonly used in yeast and bacterial systems are not available.  相似文献   

12.

Background  

Minicircle DNA is the non-replicating product of intramolecular site-specific recombination within a bacterial minicircle producer plasmid. Minicircle DNA can be engineered to contain predominantly human sequences which have a low content of CpG dinucleotides and thus reduced immunotoxicity for humans, whilst the immunogenic bacterial origin and antibiotic resistance marker gene sequences are entirely removed by site-specific recombination. This property makes minicircle DNA an excellent vector for non-viral gene therapy. Large-scale production of minicircle DNA requires a bacterial strain expressing tightly controlled site-specific recombinase, such as Cre recombinase. As recombinant plasmids tend to be more stable in RecA-deficient strains, we aimed to construct a recA - bacterial strain for generation of minicircle vector DNA with less chance of unwanted deletions.  相似文献   

13.
14.
Generating a high yield of recombinant protein is a major goal when expressing a foreign gene in any expression system. In the methylotrophic yeast Pichia pastoris , a common means of achieving this end is to select for transformants containing multiple integrated copies of an expression vector by plating them on high levels of a selectable marker drug followed by screening for rare colonies with multiple copies. We describe a more convenient method to select for such clones. Using Zeocin-resistance-based vectors, we demonstrate that strains transformed with only one or a few vector copies can, long after transformation, be subjected to further selection at high levels of drug. This resulted in the frequent selection of clones containing increased copy numbers of the vector. This posttransformational vector amplification (PTVA) process resulted in strains containing multiple head-to-tail copies of the entire vector integrated at a single locus in the genome. Of our PTVA selected clones, 40% showed a three- to fivefold increase in vector copy number. So-called 'jackpot' clones with >10 copies of the expression vector represented 5–6% of selected clones and had a proportional increase in recombinant protein.  相似文献   

15.
Metagenomics is a powerful tool for mining the genetic repositories from environmental microorganisms. Bacteria associated with marine sponges (phylum Porifera) are rich sources of biologically active natural products. However, to date, few compounds are discovered from the sponge metagenomic libraries, and the main reason might be the difficulties in recovery of high molecular weight (HMW) DNA from sponge symbionts to construct large insert libraries. Here, we describe a method to recover HMW bacterial DNA from diverse sponges with high quality for bacterial artificial chromosome (BAC) library construction. Microorganisms concentrated from sponges by differential centrifugation were embedded in agarose plugs to lyse out the HMW DNA for recovery. DNA fragments over 436 kb size were recovered from three different types of sponges, Halichondria sp., Haliclona sp., and Xestospongia sp. To evaluate the recovered DNA quality, the diversity of bacterial DNA comprised in the HMW DNA derived from sponge Halichondria sp. was analyzed, and this HMW DNA sample was also cloned into a shuttle BAC vector between Escherichia coli and Streptomyces sp. The results showed that more than five types of bacterial DNA, i.e., Proteobacteria, Nitrospirae, Cyanobacteria, Planctomycetes, and unidentified bacteria, had been recovered by this method, and an average 100 kb size insert DNA in a constructed BAC library demonstrated that the recovered HMW DNA is suitable for metagenomic library construction.  相似文献   

16.
A method for generation of arbitrary peptide libraries using genomic DNA   总被引:1,自引:0,他引:1  
Random peptide libraries can be constructed either by in vitro synthesis of random peptides, or through translation of DNA sequences from synthetic random oligonucleotides. Here we describe an alternative way of making arbitrary peptide libraries with high diversity that can be used in screening as random peptide libraries. Genomic DNA digested with a frequent-cutting restriction enzyme recognizing four nucleotides will theoretically consist of small DNA pieces with average length of 256 nucleotides, and on average around 107 fragments can be generated from a genome of 3 × 109 bases. A peptide library translated from these fragments will have sufficient diversity for some protein interaction screening experiments. Moreover, the same genome digested with a different four-cutter enzyme or ligated into different reading frames will result in different nonoverlapping libraries. A series of such libraries could be generated with genomic DNAs from different species. In this study, human genomic DNA was digested with four-cutter restriction enzymes DpnII and Tsp509I, respectively, and cloned into yeast expression vector pGADT7 to generate arbitrary peptide libraries. These libraries were used in yeast two-hybrid assays to screen for binding motifs of the PDZ domain containing protein synectin. Our results showed that in addition to various native carboxy-terminal tails, synectin could also bind to many artificial ones, some of which contained a consensus sequence—(S/T)XC-COOH.  相似文献   

17.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>109 transformants in Escherichia coli and 105-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

18.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

19.
Transformation of the astaxanthin-producing yeast Phaffia rhodozyma   总被引:1,自引:0,他引:1  
Summary This paper describes the genetic transformation of the astaxanthin-producing yeast Phaffia rhodozyma with the cloning vector pGH-1. The plasmid replicates autonomously in this yeast, and the selection of transformants was possible by using both, the URA3 marker from Saccharomyces cerevisiae, and the kanamycin resistance (KmR) determinant from the bacterial transposon Tn903.  相似文献   

20.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号