首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In investigating the staphylococcal protease-catalyzed hydrolysis of N-tert-butoxycarbonyl-L-glutamate alpha-phenyl ester, N-benzyloxycarbonyl-L-glutamate alpha-phenyl ester and N-benzyloxycarbonyl-L-glutamate alpha-p-nitroanilide, we obtained kinetic evidence consistent with the formation of an acyl-enzyme intermediate. We found that addition of a nucleophile, such as methanol, led to the partition of the common acyl-enzyme intermediate between water and the alcohol. With N-benzyl-oxycarbonyl-L-glutamate alpha-phenyl ester, a specific ester substrate, deacylation was shown to be the rate-limiting step. By studying the kcat/Km ratio of these hydrolyses as a function of pH, we have shown that two ionizable groups on the enzyme are essential to the catalytic process. One of these groups has a pK of 6.58 and the other, a pK of 8.25. The assignment of these pK values is discussed in connection with the known features of the serine proteinase reaction mechanism. In addition, monovalent anions were shown to inhibit staphylococcal protease hydrolyses. They seem to compete with the negative charge of the substrate, thus inhibiting its binding on the enzyme molecule. Finally we compared the kinetic parameters obtained with five proteases isolated from different strains of Staphylococcus aureus.  相似文献   

2.
The reaction of alpha-chymotrypsin with N alpha-3-(2-furyl)acryloyl-L-tryptophan methyl ester (FA-Trp-OMe) and amide has been investigated in aqueous and dimethylsulphoxide cryosolvent solutions from pH2 to 7 and over a wide temperature range. Previous reports have suggested that an intermediate preceding the acyl-enzyme can be detected spectrophotometrically in the reaction with methyl esters of FA-Trp and FA-Tyr at low pH [Yu & Viswanatha (1969) Eur. J. Biochem. 11, 347--352), and that this intermediate is an oxazolinone [Coletti-Previero et al. (1970) FEBS Lett. 11, 213--217]. We show that the previous interpretations of the time-dependent spectral changes were incorrect, and that the only detected intermediate is the acyl-enzyme. This may be isolated by gel filtration at pH less than 2.5, 1 degree C, owing to its relative stability. The pH-dependence of the rates of acylation and deacylation from pH 8.5 to 2.0 are consistent with a single ionization of pK congruent to 7.0 in both aqueous and cryosolvent solutions.  相似文献   

3.
Enthalpy changes of alpha-chymotrypsin acylation by 3-(2-furyl)acryloylimidazole (FAI) were calorimetrically determined as a function of pH. By observing the functional dependence of acylation enthalpies on buffer ionization heats, a complex pH profile was obtained describing proton release accompanying formation of acyl-enzyme. A pKa of 4.0 for FAI ionization and apparent pKa values of 6.8, 7.55 and 8.8 on the enzyme were used to account for the proton release data. A model which accounts for the proton release behavior was used to fit the acylation enthalpy data and values for the apparent dissociation enthalpies of the groups involved were obtained along with a pH-independent intrinsic enthalpy of acylation. This model suggests a group with an apparent pK = 6.8 and delta Hion = 8.7 kcal/mol which is perturbed to a pK of 7.55 and delta Hion = 7.6 kcal/mol on attachment of the acyl moiety to the enzyme. The apparent ionization enthalpy change for the active-inactive transition (pK3 = 8.8; delta H = 3.0 kcal/mol) corresponds with that calculated from the data of Fersht (J. Mol. Biol. 64 (1972) 497). The pH-independent intrinsic enthalpy of acylation (delta H = -7.9 kcal/mol) is corrected for group ionizations linked to the acylation process. Consequently, it more closely reflects molecular processes of interest such as substrate binding, covalent bond rearrangement, and product release.  相似文献   

4.
This work demonstrates the existence of titratable transport and modifier sites in the anion transport system of human red cells. Effects of alkaline extracellular pH on chloride exchange were studied up to pH 13 at 0 degrees C. The studies revealed two sets of reversible titratable groups. One set, having a pK of or approximately 11, appeared to be identical with the inhibitory halide-binding modifier site. Deprotonation of this site stimulated anion transport. The apparent dissociation constants of chloride and iodide at this modifier site were 0.3 and 0.06 M, respectively, and it was confirmed that the organic sulfonate NAP-taurine inhibits anion transport reversibly by a high-affinity interaction with halide-binding modifier sites at the extracellular side of the membrane. Other groups, with apparent pK of or approximately 12 at chloride concentrations above 0.1 M, were named as "transport sites" because transport function depended totally on their protonation. The apparent pK decreased when extracellular halide concentrations was lowered below 0.1 M. It was dependent of the intracellular chloride concentration, and was equally sensitive to extracellular pH of 13, was fully reversible. Hydroxyl ions were not transported to an appreciable extent by the anion exchange system. The pK values of both sets of groups make it likely that they are both arginyl residues, functioning as anion recognition sites similar to the role of functionally essential arginyl residues observed with numerous enzymes.  相似文献   

5.
C B Grissom  W W Cleland 《Biochemistry》1988,27(8):2934-2943
The catalytic mechanism of porcine heart NADP isocitrate dehydrogenase has been investigated by use of the variation of deuterium and 13C kinetic isotope effects with pH. The observed 13C isotope effect on V/K for isocitrate increases from 1.0028 at neutral pH to a limiting value of 1.040 at low pH. The limiting 13C isotope effect with deuteriated isocitrate at low pH is 1.016. This decrease in 13(V/KIc) upon deuteriation indicates a stepwise mechanism for the oxidation and decarboxylation of isocitrate. This predicts a deuterium isotope effect on V/K of 2.9, but D(V/K) at low pH only increases to a maximum of 1.08. It is not known why 13(V/KIc) with deuteriated isocitrate decreases more than predicted. The pK seen in the 13(V/KIc) pH profile for isocitrate is 4.5. This pK is displaced 1.2 pH units from the true pK of the acid/base functionality of 5.7 seen in the pKi profile for oxalylglycine, a competitive inhibitor for isocitrate. From this displacement, catalysis is estimated to be 16 times faster than substrate dissociation. By use of the pH-dependent partitioning ratio of the reaction intermediate oxalosuccinate between decarboxylation to 2-ketoglutarate and reduction to isocitrate, the forward commitment to catalysis for decarboxylation was determined to be 7.3 at pH 5.4 and 3.2 at pH 5.0. This gives an intrinsic 13C isotope effect for decarboxylation of 1.050. 3-Fluoroisocitrate is a new substrate oxidatively decarboxylated by NADP isocitrate dehydrogenase. At neutral pH, D(V/K3-F-Ic) = 1.45 and 13(V/K3-F-Ic) = 1.0129. At pH 5.2, 13(V/K3-F-Ic) increases to 1.0186, indicating that a finite, but diminished, external commitment remains at neutral pH. The product of oxidative decarboxylation of 3-hydroxyisocitrate by NADP isocitrate dehydrogenase is 2-hydroxy-3-ketoglutarate. This results from enzymatic protonation of the cis-enediol intermediate at C2 rather than C3 (as seen with isocitrate and 3-fluoroisocitrate). 2-Hydroxy-3-ketoglutarate further decarboxylates in solution to 2-hydroxy-3-ketobutyrate, which further decarboxylates to acetol. This makes 3-hydroxyisocitrate unsuitable for 13C isotope effect studies.  相似文献   

6.
Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationships. Here, a quantitative investigation of the effect of temperature and pH on the total substrate inhibition of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi, is reported. Values of the apparent catalytic and inhibition parameters Km, Vmax, Vmax/Km, and K(i) for the cruzipain-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) (Z-Phe-Arg-AMC) and azocasein were determined between 10.0 degrees C and 40.0 degrees C and between pH 4.5 and 8.5. Values of Km were independent of temperature and pH, whereas values of Vmax, Vmax/Km, and K(i) were temperature-dependent and pH-dependent. Over the whole pH range explored, values of logVmax, log(Vmax/Km), and logK(i) increased linearly with respect to T(-1). Values of Vmax and Vmax/Km were affected by the acid-base equilibrium of one temperature-independent ionizing group (i.e. pK(unl)' = pK(lig)' = 5.7 +/- 0.1, at 25.0 degrees C). Moreover, values of K(i) were affected by the alkaline pK shift of one ionizing group of active cruzipain (from pK(unl)" = 5.7 +/- 0.1 to pK(lig)" = 6.1 +/- 0.1, at 25.0 degrees C) upon Z-Phe-Arg-AMC binding. Values of logK(unl)', logK(lig)', and logK(lig)" were temperature-independent. Conversely, values of logK(unl)" were linearly dependent on T(-1). As a whole, total substrate inhibition of cruzipain decreased with increasing temperature and pH. These data suggest that both synthetic and protein substrates can bind to the unique active centre of cruzipain either productively or following a binding mode which results in enzyme inhibition. However, allosteric effect(s) cannot be excluded.  相似文献   

7.
The pH dependence of the chemical reaction rate of p-bromophenacyl bromide (BPB) with His 48 of cobra (Naja naja atra) venom phospholipase A2, in which the alpha-NH2 group had been selectively modified to an alpha-keto group, was studied at 25 degrees C and ionic strength 0.1 in the absence of Ca2+. The pH-dependence curve was monophasic with a midpoint at pH 7.9, which corresponds to the pK value of His 48 of the alpha-NH2-modified enzyme, whereas the curve for the intact enzyme was biphasic, indicating participation of two ionizable groups with pK values of 7.3 and 8.55 (Teshima et al. (1982) J. Biochem. 91, 1778-1788). These two groups were thus identified as His 48 and the alpha-NH2 group, respectively. The pH dependence of the binding constant of Ca2+ to the alpha-NH2-modified enzyme was studied at 25 degrees C and ionic strength 0.1 by measuring the tryptophyl fluorescence changes. The pH-dependence curve was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 13-20), and it was interpreted in terms of participation of His 48 and Asp 49 (pK 5.4). The absence of participation of the alpha-NH2 group in the Ca2+ binding was thus confirmed. Bindings of monodispersed n-dodecylphosphorylcholine (n-C12PC) and micellar n-hexadecylphosphorylcholine (n-C16PC) to the alpha-NH2-modified enzyme were studied at 25 degrees C and ionic strength 0.1 by the aromatic circular dichroism (CD) and tryptophyl fluorescence methods, respectively. The binding constant of the monodispersed substrate was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The binding constant of the micellar substrate to the modified enzyme in the presence of Ca2+ was also very similar to that for the intact enzyme-Ca2+ complex (Teshima et al. (1983) J. Biochem. 94, 223-232), and the pH-dependence curve was interpreted in terms of participation of His 48. On the other hand, the binding constant of the micellar substrate to the modified apoenzyme was much smaller than that for the intact apoenzyme. Nevertheless, the pH-dependence curve could be interpreted in terms of participation of His 48 and Asp 49. From these findings, it was concluded that the ionization state of the alpha-NH2 group of cobra venom phospholipase A2 is essentially irrelevant to the bindings of Ca2+ and also of the monodispersed and micellar substrates.  相似文献   

8.
Badarau A  Page MI 《Biochemistry》2006,45(35):10654-10666
The kinetics and mechanism of hydrolysis of the native zinc and metal substituted Bacillus cereus (BcII) metallo-beta-lactamase have been investigated. The pH and metal ion dependence of k(cat) and k(cat)/K(m), determined under steady-state conditions, for the cobalt substituted BcII catalyzed hydrolysis of cefoxitin, cephaloridine, and cephalexin indicate that an enzyme residue of apparent pK(a) 6.3 +/- 0.1 is required in its deprotonated form for metal ion binding and catalysis. The k(cat)/K(m) for cefoxitin and cephalexin with cadmium substituted BcII is dependent on two ionizing groups on the enzyme: one of pK(a1) = 8.7 +/- 0.1 required in its deprotonated form and the other of pK(a2) = 9.3 +/- 0.1 required in its protonated form for activity. The pH dependence of the competitive inhibition constant, K(i), for CdBcII with l-captopril indicates that pK(a1) = 8.7 +/- 0.1 corresponds to the cadmium-bound water. For the manganese substituted BcII, the pH dependence of k(cat)/K(m) for benzylpenicillin, cephalexin, and cefoxitin similarly indicated the importance of two catalytic groups: one of pK(a1) = 8.5 +/- 0.1 which needs to be deprotonated and the other of pK(a2) = 9.4 +/- 0.1 which needs to be protonated for catalysis; the pK(a1) was assigned to the manganese-bound water. The rate was metal ion concentration dependent at the highest manganese concentrations used (10(-)(3) M). The metal substituted species have similar or higher catalytic activities compared with the zinc enzyme, albeit at pHs above 7. Interestingly, with cefoxitin, a very poor substrate for ZnBcII, both k(cat) and k(cat)/K(m) increase with increasing pK(a) of the metal-bound water, in the order Zn < Co < Mn < Cd. A higher pK(a) for the metal-bound water for cadmium and manganese BCII leads to more reactive enzymes than the native zinc BcII, suggesting that the role of the metal ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.  相似文献   

9.
The active site of lysostaphin is shown to contain a residue of glutamic acid. As judged by a pK value of 9.2 (with pentaglycine bridges in peptidoglycan of staphylococci as a substrate), another ionogenic residue could be the epsilon-amino group of a lysine. However, the pH value near a negatively charged cell is supposed to be strongly shifted to acidity as compared to the pH of the solution volume. This shifts the enzyme pH dependence curve in solution to alkalinity. Therefore, the other group might be histidine, which is consistent with the X-ray crystallographic data. A similar shift is likely to occur for lysozyme in the case of Micrococcus lysodeikticus cells. Determination of pK of ionogenic groups in the active sites of alkaline enzymes responsible for lysis of negatively charged bacterial cells gives their apparent values because the "pericellular" and "voluminous" values of pH are not coincident.  相似文献   

10.
5-Aminolevulinate synthase catalyzes the pyridoxal 5'-phosphate-dependent condensation of glycine and succinyl-CoA to produce carbon dioxide, CoA, and 5-aminolevulinate, in a reaction cycle involving the mechanistically unusual successive cleavage of two amino acid substrate alpha-carbon bonds. Single and multiple turnover rapid scanning stopped-flow experiments have been conducted from pH 6.8-9.2 and 5-35 degrees C, and the results, interpreted within the framework of the recently solved crystal structures, allow refined characterization of the central kinetic and chemical steps of the reaction cycle. Quinonoid intermediate formation occurs with an apparent pK(a) of 7.7 +/- 0.1, which is assigned to His-207 acid-catalyzed decarboxylation of the alpha-amino-beta-ketoadipate intermediate to form an enol that is in rapid equilibrium with the 5-aminolevulinate-bound quinonoid species. Quinonoid intermediate decay occurs in two kinetic steps, the first of which is acid-catalyzed with a pK(a) of 8.1 +/- 0.1, and is assigned to protonation of the enol by Lys-313 to generate the product-bound external aldimine. The second step of quinonoid decay defines k(cat) and is relatively pH-independent and is assigned to opening of the active site loop to allow ALA dissociation. The data support important refinements to both the chemical and kinetic mechanisms and indicate that 5-aminolevulinate synthase operates under the stereoelectronic control predicted by Dunathan's hypothesis.  相似文献   

11.
Resonance Raman spectra were obtained for the acylenzyme 4-dimethylamino-3-nitro(alpha-benzamido)cinnamoyl-papain prepared using the chromophoric substrate methyl 4-dimethylamino-3-nitro(alpha-benzamido)cinnamate. These spectra contained vibrational spectral data of the acyl residue while covalently attached to the active site and could be used to follow directly acylation and deacylation kinetics. Spectra were obtained at pH values ranging from those where the acyl-enzyme is relatively stable (pH 3.0, tau 1/2 congruent to 800 s) to those where it is relatively unstable (pH 9.2, tau 1/2 congruent to 223 s). Throughout this range acyl-enzyme spectra differed completely from that of the free substrate or the product (4-dimethylamino-3-nitro(alpha-benzamido)cinnamic acid) indicating that a structural change occurred on combination with the active site. The spectra are consistent with rearrangement of the alpha-benzamido group in the bound substrate, -NH--C(==O)Ph becoming --N==C(--OX)Ph, where the bonding to oxygen is unknown. Superimposed on these large differences, small changes in acyl-enzyme spectra also occurred as pH was raised to decrease the half-life. All of the above spectral perturbations are consistent with a structural change in the acyl-enzyme which precedes the rate-determining step in deacylation. Thus, deacylation proceeds from an acyl residue structure differing from that of the substrate in solution. Upon acid denaturation the spectrum characteristic of the intermediate reverts to one closely resembling the substrate, demonstrating that a functioning active site is necessary to produce the observed differences. Spectra in D2O of native acyl-enzyme were identical with those in H2O, indicating that the observed differences in rate constant were not due to solvent-induced structural changes. Activated papain purified by crystallization or by affinity chromatography formed the acyl-enzyme. However, the kinetics of formation and deacylation differed between these materials, as did the spectral properties. Small differences in active-site structure are considered to be responsible for this effect, and it is suggested that such spectral perturbations may be useful in directly relating small differences in structure of the substrate in the active site with corresponding differences in kinetics.  相似文献   

12.
The ionization and phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphoserine have been investigated under a variety of condtions by several different methods. As measured by turbidity changes, the temperature of the crystal-liquid crystal phase transition of this lipid is influenced by pH and mono- and divalent cation concentrations. The pH-transition temperature curve is congruent with the curve relating temperature to the degree of ionization of the carboxyl group of the crystalline form. The transition temperature falls from an upper plateau of 72 degrees C at low pH values, where the carboxyl group is fully protonated, to a lower plateau of 55 degrees C at high pH values, where this group is fully ionized. The apparent pK (pH at 50% ionization) of the crystalline form shifts from 6.0 to 4.6 to 3.7 with an increase of NaCl concentration from 10(-3) to 0.1 to l.0 M, respectively. These observations are in accord with a simple theoretical analysis that utilizes diffuse double layer theory and the influence of surface potential on surface concentration of protons. In qualitative terms, an increase in electrolyte concentration reduces the surface potential, the result of which is a diminution of the surface-bulk pH difference and a lowering of the apparent pK. Assuming an area of 50 A2/molecule, the intrinsic pKa (apparent pK corrected for surface pH) of the carboxyl group is 2.7. A 1000-fold change of NaCl concentration produces a very large change in surface potential without influencing the transition temperature of the ionized form of the lipid.  相似文献   

13.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by a cobra (Naja naja atra) venom phospholipase A2, was studied at 25 degrees C ionic strength 0.1 in the presence of 3-10 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micellar concentration (cmc), were analyzed according to the Michaelis-Menten equation. The Km value was practically independent of pH (between pH 6.75 and 10.30). This finding was consistent with the result of a direct binding study on monodispersed n-alkylphosphorylcholines (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The hydrolysis of the substrate was competitively inhibited by the presence of monodispersed n-dodecylphosphorylcholine (n-C12PC). These results indicated that the substrate and n-C12PC compete for the same site on the enzyme molecule. The pH dependence curve of the kinetic parameter, kcat/Km, exhibited three transitions, below pH 8, between pH 8 and 9.5, and above pH 10. The analysis indicated the participation of three ionizable groups with pK values of 7.25, 8.50, and 10.4. The deprotonation of the first group and the protonation of the third group were found to be essential for the catalysis. The first group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Teshima et al. (1981) J. Biochem. 89, 13-20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
D-Glyceraldehyde 3-phosphate forms adducts with thiols. These adducts, which are presumed to be hemithioacetals, equilibrate rapidly with the unhydrated form of the aldehyde, which is the subtrate for D-glyceraldehyde 3-phosphate dehydrogenase. The adduct provides a substrate buffer system whereby a constant low free aldehyde concentration can be maintained during the oxidation of aldehyde by the enzyme and NAD+. With this system, the kinetics of the association of the aldehyde with the enzyme were examined. The rate profile for this reaction is a single exponential process, showing that all four active sites of the enzyme have equivalent and independent reactivity towards the aldehyde, with an apparent second-order rate constant of 5 X 10(7)M-1-S-1 at pH8.0 and 21 degrees C. The second-order rate constant becomes 8 X 10(7)M-1-S-1 when account is taken of the forward and reverse catalytic rate constants of the dehydrogenase. The pH-dependence of the observed rate constant is consistent with a requirement for the unprotonated form of a group of pK 6.1, which is the pK observed for second ionization of glyceraldehyde 3-phosphate. The rate of phosphorolysis of the acyl-enzyme intermediate during the steady-state oxidative phosphorylation of the aldehyde was studied, and is proportional to the total Pi concentration up to at least 1 mM-Pi at pH 7.5. The pH-dependence of the rate of NADH generation under these conditions can be explained by the rate law d[NADA]/dt = k[acy] holoenzyme][PO4(3-)-A1, where thioester bond, although kinetically indistinguishable rate equations for the reaction are possible. The rates of the phosphorolysis reaction and of the aldehyde-association reaction decrease with increasing ionic strength, suggesting that the active site of the enzyme has cationic groups which are involved in the reaction of the enzyme with anionic substrates.  相似文献   

15.
The effect of pH on steady state kinetic parameters for the yeast alcohol dehydrogenase-catalyzed reduction of aldehydes and oxidation of alcohols has been studied. The oxidation of p-CH3 benzyl alcohol-1,1-h2 and -1,1-d2 by NAD+ was found to be characterized by large deuterium isotope effects (kH/kD = 4.1 plus or minus 0.1) between pH 7.5 and 9.5, indicating a rate-limiting hydride trahsfer step in this pH range; a plot of kCAT versus pH could be fit to a theoretical titration curve, pK = 8.25, where kCAT increases with increasing pH. The Michaelis constnat for p-CH3 benzyl alcohol was independent of pH. The reduction of p-CH3 benzaldehyde by NADH and reduced nicotinamide adenine dinucleotide with deuterium in the 4-A position (NADD) cound not be studied below pH 8.5 due to substrate inhibition; however, between pH 8.5 and 9.5, kCAT was found to decrease with increasing pH and to be characterized by significant isotope effects (kH/kD = 3.3 plus or minus 0.3). In the case of acetaldehyde reduction by NADH and NADD, isotope effects were found to be small and exxentially invariant (kH/kD = 2.O plus or minus 0.4) between pH 7.2 and 9.5, suggesting a partially rate-limiting hydride transger step for this substrate; a plot of kCAT/K'b (where K'b is the Michaelis constant for acetaldehyde) versus pH could be fit to a titration curve, pK = 8.25. The titration curve for acetaldehyde reduction has the same pK but is opposite in direction to that observed for p-CH3 benzyl alcohol oxidation. The data presented in this paper indicate a dependence on different enzyme forms for aldehyde reduction and alcohol oxidation and are consistent with a single active site side chain, pK = 8.25, which functions in acid-base catalysis of the hydride transfer step.  相似文献   

16.
There have been several studies indicating that hydrolysis reactions of fatty acid esters catalyzed by lipases proceed through an acyl-enzyme intermediate typical of serine proteases. In particular, one careful kinetic study with the physiologically important enzyme lipoprotein lipase (LPL) is consistent with rate-limiting deacylation of such an intermediate. To observe the spectrum of acyl-enzyme and study the mechanism of LPL-catalyzed hydrolysis of substrate, we have used a variety of furylacryloyl substrates including 1,2-dipalmitoyl-3-[(beta-2-furylacryloyl)triacyl]glyceride (DPFATG) to study the intermediates formed during the hydrolysis reaction catalyzed by the enzyme. After isolation and characterization of the molecular weight of adipose LPL, we determined its extinction coefficient at 280 nm to quantitate the formation of any acyl-enzyme intermediate formed during substrate hydrolysis. We observed an intermediate at low pH during the enzyme-catalyzed hydrolysis of (furylacryloyl)imidazole. This intermediate builds early in the reaction when a substantial amount of substrate has hydrolyzed but no product, furylacrylate, has been formed. The acyl-enzyme has a lambda max = 305 nm and a molar extinction coefficient of 22,600 M-1 cm-1; these parameters are similar to those for furylacryloyl esters including the serine ester. These data provide the first spectral evidence for a serine acyl-enzyme in lipase-catalyzed reactions. The LPL hydrolysis reaction is base catalyzed, exhibiting two pKa values; the more acidic of these is 6.5, consistent with base catalysis by histidine. The biphasic rates for substrate disappearance or product appearance and the absence of leaving group effect indicate that deacylation of intermediate is rate limiting.  相似文献   

17.
The effect of pH on the kinetic parameters (Km and Ki) for extracellular acid Penicillium brevicompactum RNAse (pH max 4.7+/-0.1), non-specific to the chemical nature of nucleic bases, was studied. The pKm--pH dependence curve showed bends within the following intervals of pH: 3.5--4.0 and 5.6--6.0 (upward side concavity) and 6.2--6.8 (downward side concavity). The pKi--pH dependence for adenosine-3'-monophosphate as an inhibitor is identical to the pH dependence on pKm for the substrate. On the other hand, the pKi--pH dependence curves obtained for the base-free inhibitors (ribose-5'-monophosphate, or phosphate (adenosine) show no bends within the pH intervals of 3.0--4.0 and 5.6--7.0 respectively. A possibility is discussed of the presence of a carboxylic (pK 3.58+/-0.1) and two imidazole groups (pK 6.42+/-0.1--a weakly protonated and 5.8+/-+/-0.1--a strongly protonated group) in the RNAse active site and their participation in the formation of the RNAse-nucleotide (RNAse-substrate) complex.  相似文献   

18.
Guinea pig liver transglutaminase (TGase) reacts with 0.1 mM N-Cbz-L-Glu(gamma-p-nitrophenyl ester)Gly (5, prepared herein, K(M) = 0.02 mM) to undergo rapid acylation that can be followed spectrophotometrically at 400 nm (pH 7.0, 25 degrees C). Deacylation of the transiently formed thiolester acyl enzyme intermediate via catalytic aminolysis was studied in the presence of six primary amines of widely varying basicity (pK(NH+) = 5.6-10.5). Steady-state kinetic studies were performed to measure k(cat) and K(M) values for each amine substrate. A Br?nsted plot constructed through the correlation of log(k(cat)/K(M)) and pK(NH+) for each amine substrate displays a linear free-energy relationship with a slope beta(nuc) = -0.37 +/- 0.08. The shallow negative slope is consistent with a general-base-catalyzed deacylation mechanism in which a proton is removed from the amine substrate during its rate-limiting nucleophilic attack on the thiolester carbonyl. Kinetic isotope effects were measured for four acceptor substrates (water, kie = 1.1 +/- 0.1; aminoacetonitrile, kie = 5.9 +/- 1.2; glycine methyl ester, kie = 3.4 +/- 0.7; N-Ac-L-lysine methyl ester, kie = 1.1 +/- 0.1) and are consistent with a proton in flight at the rate-limiting transition state. The active site general-base implicated by these kinetic results is believed to be His-334, of the highly conserved TGase Cys-His-Asp catalytic triad.  相似文献   

19.
Rabbit skeletal muscle phosphofructokinase has been previously shown to exhibit the characteristic of cold lability in phosphate buffers at pH values below pH 7 [Bock, P.E. and Frieden, C. (1974) Biochemistry 13, 4191–4196]. Studies of the residual activity as a function of pH, reflecting the equilibrium between active and inactive forms of the enzyme, have been performed. These experiments show that the cold lability can be ascribed to a shift of the apparent pK describing the pH-dependent inactivation to lower pH values at higher temperatures. The apparent pK, Hill interaction coefficient and heat of ionization for this process indicate that the equilibrium between the inactive and active forms of the enzyme may be controlled by the ionization of one or more histidine residues per enzyme subunit. In addition the apparent pK for the pH dependence of the residual activity at constant temperature is influenced by the presence of ligands which are substrates or effectors of the phosphofructokinase reaction.  相似文献   

20.
Bindings of cobra venom phospholipases A2 to micelles of n-hexadecylphosphorylcholine were studied by the tryptophyl fluorescence method at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of substrate (monomer) molecules, N = 10, 5 or 13 for N. naja atra apoenzyme and its Ca2+ complex, and N. naja kaouthia apoenzyme, respectively. The binding constant of the enzymes to the micelle, Kmic = 0.18-3.1 X 10(6) M-1, was 9-160 times greater than that to the monomeric substrate, Kmon = 2 X 10(4) M-1 (Teshima et al. (1981) J. Biochem. 89, 1163-1174). This was interpreted in terms of the presence of an additional substrate-binding site in the enzyme molecule. The binding constant of the enzyme-Ca2+ complex to the micelle was smaller than that for the apoenzyme over a wide range of pH. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.4 to 5.53 and 7.55 to 7.95. The pH dependence curve for the Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of only a single ionizable group from 7.25 to 7.55. The former ionizable group was assigned as Asp 49, to which Ca2+ can coordinate, and the latter as His 48 in the active site on the basis of the reported pK values of these ionizable groups in the apoenzyme and Ca2+ complex (Teshima et al. (1981) J. Biochem. 89, 13-20 and Teshima et al. (1982) J. Biochem. 91, 1777-1788). No participation of the alpha-amino group with a pK value of 8.55 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号