首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature.  相似文献   

2.
Rapid increase in deep supercooling of xylem parenchyma   总被引:5,自引:2,他引:3       下载免费PDF全文
Hong SG  Sucoff E 《Plant physiology》1982,69(3):697-700
Malus pumila Mill. twigs were collected from September through December and stored at 5°C until the low temperature exotherms of the xylem were determined by differential thermal analysis. During the differential thermal analysis, cooling was interrupted, and temperatures of 5 to −18°C were held for 0.4 to 10 hours before cooling to −50°C was resumed. Control twigs were cooled to −50°C without interruption. Holding the twigs at 1.3 to −5°C shifted the start of the low temperature exotherm from about −20 to −30°C. Slightly higher (2.6°C) and lower (−10°C) temperatures were occasionally effective. The shift began within 20 to 30 minutes and increased progressively to 150 minutes. The acclimation was reversibly inhibited by N2 atmosphere.  相似文献   

3.
Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0°N to 42°N and 67°W to 13°W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 × 106 copies liter−1) nifH concentrations of group A were detected in the eastern basin (25 to 17°N, 27 to 30°W), where the temperature ranged from 20 to 23°C. The highest concentrations of filamentous phylotypes were measured between 25 and 30°C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18°C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m2/year.  相似文献   

4.
When cooled at rapid rates to temperatures between −10 and −30°C, the incidence of intracellular ice formation was less in protoplasts enzymically isolated from cold acclimated leaves of rye (Secale cereale L. cv Puma) than that observed in protoplasts isolated from nonacclimated leaves. The extent of supercooling of the intracellular solution at any given temperature increased in both nonacclimated and acclimated protoplasts as the rate of cooling increased. There was no unique relationship between the extent of supercooling and the incidence of intracellular ice formation in either nonacclimated or acclimated protoplasts. In both nonacclimated and acclimated protoplasts, the extent of intracellular supercooling was similar under conditions that resulted in the greatest difference in the incidence of intracellular ice formation—cooling to −15 or −20°C at rates of 10 or 16°C/minute. Further, the hydraulic conductivity determined during freeze-induced dehydration at −5°C was similar for both nonacclimated and acclimated protoplasts. A major distinction between nonacclimated and acclimated protoplasts was the temperature at which nucleation occurred. In nonacclimated protoplasts, nucleation occurred over a relatively narrow temperature range with a median nucleation temperature of −15°C, whereas in acclimated protoplasts, nucleation occurred over a broader temperature range with a median nucleation temperature of −42°C. We conclude that the decreased incidence of intracellular ice formation in acclimated protoplasts is attributable to an increase in the stability of the plasma membrane which precludes nucleation of the supercooled intracellular solution and is not attributable to an increase in hydraulic conductivity of the plasma membrane which purportedly precludes supercooling of the intracellular solution.  相似文献   

5.
6.
Stout DG 《Plant physiology》1988,86(1):275-282
The resistive and reactive components of electrical impedance were measured for birdsfoot trefoil (Lotus corniculatus L.) stems at freezing temperatures to −8°C. As temperature decreased the specific resistance at frequencies between 49 hertz and 1.11 megahertz of stems from cold acclimated plants increased more rapidly than from nonacclimated plants. This temperature dependence of specific resistance could be characterized by an Arrhenius activation energy; cold acclimated stems had a larger Arrhenius activation energy than nonacclimated stems. The low frequency resistance is believed to characterize the extracellular region of the stems and the high frequency resistance is believed to characterize the intracellular region of the stems. Cold acclimation increased the intracellular but not the extracellular resistance at nonfreezing temperatures. Cold acclimated stems were not injured by freezing to −8°C and thawing, but nonacclimated stems were injured by freezing to temperatures between −2.2 and −5.6°C and thawing. Injury to nonacclimated stems at freezing temperatures below −2.2°C was indicated by a decrease in the ratio of resistance at 49 Hz to that at 1.11 megahertz.  相似文献   

7.
Thermal, metabolic, and circulatory responses were studied in six hill-walkers taking part in a 28-mile (45-km.) walk in rough country in autumn and winter, air temperatures being 6 to 12° C. and –2 to 2° C., respectively.Though they were an apparently well-matched party, the walkers had to split into three pairs to avoid exhaustion. They adjusted their clothing so that mean skin temperatures were similar in both warm and cold conditions, the average value being 30·5° C. compared with the resting comfort range of 33 to 34·5° C. When, on the winter trial, skin temperatures were lowered by reduction of clothing, mean skin temperatures fell to 26·5 to 27·8° C., one subject showing a value of 21·3° C. These temperatures were associated with moderate discomfort from cold.Gut temperatures during exercise, measured with a radio pill, averaged 38·7 to 37·9° C. on the autumn exercise. Slightly lower values were observed in winter, but this was associated with slower walking rather than cold stress. A fat and a thin subject walking together with minimal clothing showed widely different temperature responses, the fatter subject having a lower skin temperature and higher gut temperature than his companion. These results were compared with other results on extreme cold stress and discussed in relation to hypothermia. Heart rate and blood pressure findings were unremarkable, except for increased post-exercise heart rates and standing/lying heart rate differences, and a tendency to postural hypotension associated with exhaustion. Blood volume was not reduced in exhaustion and there were no significant changes in blood electrolytes or other constituents apart from a small rise in potassium. Ketonuria developed in all subjects.  相似文献   

8.
The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs.Key words: monoclonal antibodies, thermodynamic stability, cold denaturation, free energy, fluorescence  相似文献   

9.
The marine bacterium Shewanella algae, which was identified as the cause of human cases of bacteremia and ear infections in Denmark in the summers of 1994 and 1995, was detected in seawater only during the months (July, August, September, and October) when the water temperature was above 13°C. The bacterium is a typical mesophilic organism, and model experiments were conducted to elucidate the fate of the organism under cold and nutrient-limited conditions. The culturable count of S. algae decreased rapidly from 107 CFU/ml to 101 CFU/ml in approximately 1 month when cells grown at 20 to 37°C were exposed to cold (2°C) seawater. In contrast, the culturable count of cells exposed to warmer seawater (10 to 25°C) remained constant. Allowing the bacterium a transition period in seawater at 20°C before exposure to the 2°C seawater resulted in 100% survival over a period of 1 to 2 months. The cold protection offered by this transition (starvation) probably explains the ability of the organism to persist in Danish seawater despite very low (0 to 1°C) winter water temperatures. The culturable counts of samples kept at 2°C increased to 105 to 107 CFU/ml at room temperature. Most probable number analysis showed this result to be due to regrowth rather than resuscitation. It was hypothesized that S. algae would survive cold exposure better if in the biofilm state; however, culturable counts from S. algae biofilms decreased as rapidly as did counts of planktonic cells.  相似文献   

10.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

11.
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.  相似文献   

12.
Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (~73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response.  相似文献   

13.
Fifty bacterial strains able to grow at pH 10 and 0°C were isolated from soils, and growth characteristics of three selected strains were investigated. Strain 207, which showed the best growth rate of all the isolates at the conditions described above, could grow at a temperature of −5 to 39°C at pH 8.5. The optimum pH for this strain changed from 9.5 at 10°C to 9.0 at 20°C.  相似文献   

14.
Endotoxin exposure occurs in homes and occupational environments and is known to cause adverse health effects. In order to compare results from different studies and establish standards, airborne endotoxin exposures should be assessed using standardized methods. Although the European Committee for Standardization (CEN) developed guidelines for endotoxin exposure assessment, these leave room for individual interpretation. The influence of methods of sampling, extraction, and analysis has never been investigated in a full experimental design. Thus, we sought to fully elucidate the importance of all facets of endotoxin assessment. Inhalable dust samples collected simultaneously were used to investigate the effects on and interactions with airborne endotoxin concentration in two working environments of filter type (glass fiber or Teflon), transport conditions (with/without desiccant), sample storage (−20 or 4°C), extraction solution (pyrogen-free water [PFW] or PFW plus 0.05% Tween 20), extract storage (−20 or 4°C), and assay solution (PFW or PFW plus 0.05% Tween 20). Four hundred samples were collected and randomly distributed over the 20 combinations of treatments. There were no differences found for transport conditions and storage temperature of extracts. Also, no interactions between study variables existed. Sampling on glass-fiber filters, storage of samples in the freezer, and extraction in PFW plus 0.05% Tween 20 resulted in 1.3-, 1.1-, and 2.1-fold-higher estimated endotoxin concentrations, respectively. Use of PFW plus 0.05% Tween 20 in the assay solution had an additive effect. Thus, this study investigated gaps in the CEN protocol and provides data with which to fully specify a protocol for standardization of endotoxin exposure assessment.  相似文献   

15.
The sea ice microbial community plays a key role in the productivity of the Southern Ocean. Exopolysaccharide (EPS) is a major component of the exopolymer secreted by many marine bacteria to enhance survival and is abundant in sea ice brine channels, but little is known about its function there. This study investigated the effects of temperature on EPS production in batch culture by CAM025, a marine bacterium isolated from sea ice sampled from the Southern Ocean. Previous studies have shown that CAM025 is a member of the genus Pseudoalteromonas and therefore belongs to a group found to be abundant in sea ice by culture-dependent and -independent techniques. Batch cultures were grown at −2°C, 10°C, and 20°C, and cell number, optical density, pH, glucose concentration, and viscosity were monitored. The yield of EPS at −2°C and 10°C was 30 times higher than at 20°C, which is the optimum growth temperature for many psychrotolerant strains. EPS may have a cryoprotective role in brine channels of sea ice, where extremes of high salinity and low temperature impose pressures on microbial growth and survival. The EPS produced at −2°C and 10°C had a higher uronic acid content than that produced at 20°C. The availability of iron as a trace metal is of critical importance in the Southern Ocean, where it is known to limit primary production. EPS from strain CAM025 is polyanionic and may bind dissolved cations such at trace metals, and therefore the presence of bacterial EPS in the Antarctic marine environment may have important ecological implications.  相似文献   

16.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

17.
Metabolic Activity of Permafrost Bacteria below the Freezing Point   总被引:11,自引:3,他引:8       下载免费PDF全文
Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.  相似文献   

18.
Fu CF  Gibbs M 《Plant physiology》1987,83(4):849-855
Spinach chloroplasts were used to study the relationship between photosynthetic CO2 fixation and temperature from 30 to −15°C. In saturating light and high concentrations of CO2, the temperature coefficients (Q10) above 20°C were less than 2 in the intact chloroplast. Below 15°C, the Q10 values were greater than 2 and gradually increased with decreasing (down to 0°C) temperature to approximately 4.4. Photosynthesis responded similarly to temperature in a reconstituted chloroplast preparation fortified with ribose 5-phosphate. In the intact chloroplast, temperature did not alter the Q10 value in low light and high CO2. Elevating the temperature to 25°C after photosynthesizing at −15°C (46 minutes) or 0°C (17 minutes) restored the temperature-depressed photosynthetic rate without a lag in the intact chloroplast to the rate of a chloroplast continually at 25°C. At 0°C, the intact chloroplast photosynthetic rate responded slightly to the inorganic phosphate concentration (0.1-1.0 millimolar) and to pH (7.0-8.6). Relative to 25°C, the levels of ribulose 1,5-bisphosphate and glycerate 3-phosphate were increased 1300 and 200%, respectively, whereas glycolate decreased 57% during intact chloroplast photosynthesis at 0°C. Chilling temperature impeded the transport of photosynthetic intermediates from the stromal compartment to the external medium. Ethylene glycol was shown to be an appropriate additive to prevent freezing of the reaction mixture down to −15°C for photosynthetic CO2 assimilation.  相似文献   

19.
ObjectiveTo evaluate the agreement between temperature measured at the axilla and rectum in children and young people.DesignA systematic review of studies comparing temperature measured at the axilla (test site) with temperature measured at the rectum (reference site) using the same type of measuring device at both sites in each patient. Devices were mercury or electronic thermometers or indwelling thermocouple probes.Results20 studies (n=3201 (58%) participants) had sufficient data to be included in a meta-analysis. There was significant residual heterogeneity in both mean differences and sample standard deviations within the groups using different devices and within age groups. The pooled (random effects) mean temperature difference (rectal minus axillary temperature) for mercury thermometers was 0.25°C (95% limits of agreement −0.15°C to 0.65°C) and for electronic thermometers was 0.85°C (−0.19°C to 1.90°C). The pooled (random effects) mean temperature difference (rectal minus axillary temperature) for neonates was 0.17°C (−0.15°C to 0.50°C) and for older children and young people was 0.92°C (−0.15°C to 1.98°C).ConclusionsThe difference between temperature readings at the axilla and rectum using either mercury or electronic thermometers showed wide variation across studies. This has implications for clinical situations where temperature needs to be measured with precision.  相似文献   

20.
Hurry VM  Huner NP 《Plant physiology》1992,100(3):1283-1290
Photoinhibition of photosynthesis and its recovery were studied in wheat (Triticum aestivum L.) leaves grown at nonhardening (20°C) and cold-hardening (5°C) temperatures. Cold-hardened wheat leaves were less susceptible to photoinhibition at 5°C than nonhardened leaves, and the winter cultivars, Kharkov and Monopol, were less susceptible than the spring cultivar, Glenlea. The presence of chloramphenicol, a chloroplastic protein synthesis inhibitor, increased the susceptibility to photoinhibition, but cold-hardened leaves still remained less susceptible to photoinhibition than nonhardened leaves. Recovery at 50 μmol m−2 s−1 photosynthetic photon flux density and 20°C was at least biphasic, with a fast and a slow phase in all cultivars. Cold-hardened leaves recovered maximum fluorescence and maximum variable fluorescence in the dark-adapted state during the fast phase at a rate of 42% h−1 compared with 22% h−1 for nonhardened leaves. The slow phase occurred at similar rates (2% h−1) in cold-hardened and nonhardened leaves. Full recovery required up to 30 h. Fast-recovery phase was not reduced by either lowering the recovery temperature to 5°C or by the presence of chloramphenicol. Slow-recovery phase was inhibited by both treatments. Hence, the fast phase of recovery does not require de novo chloroplast protein synthesis. In addition, only approximately 60% of the photochemical efficiency lost through photoinhibition at 5°C was associated with lost [14C]atrazine binding and, hence, with damage to the secondary quinone electron acceptor for photosystem II-binding site. We conclude that the decrease in susceptibility to photoinhibition exhibited following cold hardening of winter and spring cultivars is not due to an increased capacity for repair of photoinhibitory damage at 5°C but reflects intrinsic properties of the cold-hardened photosynthetic apparatus. A model to account for the fast component of recovery is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号