首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-[32P]phosphoserine was found to be the only phosphoamino acid in the acid hydrolysate of the [32P]ColE1 DNA-peptide produced by action of proteases on the ColE1 DNA relaxation complex. This finding suggests that the relaxation protein is bound to ColE1 DNA in the relaxation complex via a phosphodiester linkage between a serine hydroxyl of the protein and the 5'-phosphate of the terminal deoxycytidine residue of the DNA.  相似文献   

2.
By using flow linear dichroism, in combination with nuclease digestion and two spectroscopically distinguishable DNAs, we demonstrate the existence of two internal and one external DNA-binding sites in the RecA fiber. A number of different complexes between RecA and single- and double-stranded DNAs are characterized with respect to stoichiometry, location, and base orientation of each of the associated DNAs. Based on these results, we discuss important steps of the mechanism of general genetic recombination.  相似文献   

3.
KplE1 is one of the 10 prophage regions of Escherichia coli K12, located at 2464 kb on the chromosome. KplE1 is defective for lysis, but it is fully competent for excisive recombination. In this study, we have mapped the binding sites of the recombination proteins, namely IntS, TorI, and IHF on attL and attR, and the organization of these sites suggests that the intasome is architecturally different from the lambda canonical form. We also measured the relative contribution of these proteins to both excisive and integrative recombination by using a quantitative in vitro assay. These experiments show a requirement of the TorI excisionase for excisive recombination and of the IntS integrase for both integration and excision. Moreover, we observed a strong influence of the supercoiled state of the substrates. The KplE1 recombination module, composed of the integrase and excisionase genes together with the attL and attR DNA regions, is highly similar to that of several phages infecting various E. coli strains as well as Shigella flexneri and Shigella sonnei. The in vitro recombination data reveal that HK620 and KplE1 att sequences are exchangeable. This study thus defines a new site-specific recombination module, and implications for the mechanism and regulation of recombination are discussed.  相似文献   

4.
Plasmid pSC101 is neither self-transmissible nor efficiently mobilized (made to transfer) by the Escherichia coli F factor. When fragments of F factor DNA were inserted into pSC101 the resulting chimeric plasmids were mobilized by the F factor at enhanced frequencies. These chimeric plasmids, which were not self-transmissible, fell into three classes according to their relative ability to be mobilized by an autonomous or integrated F factor: (1) class I pSC101-F chimeric plasmids contain the origin of transfer of the F factor (oriT) and were mobilized in trans at an efficiency nearly equal to that of F factor transfer; (2) class II pSC101-F chimeric plasmids lacked both oriT and the origin of vegetative F replication (oriV1), and were mobilized in cis via fusion with the F factor in a recA-dependent recombination to yield a transferable co-integrated plasmid; (3) class III pSC101-F chimeric plasmids lacked oriT but contained oriV1 and were mobilized in cis via co-integration with the F factor probably at oriV1 in a recA-independent recombination. A fourth class of mobilization event, not exhibited by pSC101-F chimeric plasmids, was also observed. Mobilization of pBR322 and pSC101 occurred in cis via transposon-mediated recA-independent fusion with F. On the basis of these results we present a general classification scheme of non-conjugative plasmids and also suggest mechanisms for their mobilization.  相似文献   

5.
We have constructed phage lambda and plasmid DNA substrates (lambda tk2 and ptk2) that contain two defective herpesvirus thymidine kinase (tk) genes that can be used to detect homologous recombination during the transfer of DNA into mouse L cells deficient in thymidine kinase activity. The recombination event reconstructs a wild-type tk gene and is scored because it converts Tk- cells to Tk+. Using this system, we have shown that (i) both intramolecular and intermolecular homologous recombination can be detected after gene transfer; (ii) the degree of recombination decreases with decreasing tk gene homology; and (iii) the efficiency of recombination can be stimulated 10- to 100-fold by cutting the tk2 DNA with restriction enzymes at appropriate sites relative to the recombining sequences. Based on the substrate requirements for these recombination events, we propose a model to explain how recombination might occur in mammalian cells. The essential features of the model are that the cut restriction site ends are substrates for cellular exonucleases that degrade DNA strands. This process exposes complementary strands of the two defective tk genes, which then pair. Removal of unpaired DNA at the junction between the paired and unpaired regions permits a gap repair process to reconstruct an intact gene.  相似文献   

6.
7.
C N Parker  S E Halford 《Cell》1991,66(4):781-791
A noninvasive method for monitoring communications on DNA was developed from the specificity of resolvase for the arrangement of its recombinational sites. Constraints in DNA structure, caused by interactions between distant sites, can be detected by resolvase as they arise. The method was used to follow the formation and decay of synaptic intermediates during site-specific recombination by resolvase. Synaptic complexes were formed very rapidly, at a rate limited by the initial association of the protein with DNA rather than the physical motion of DNA segments. The recombinational sites seem to encounter each other by an ordered motion, perhaps dictated by DNA supercoiling instead of random collisions, so that the first encounter produces the active complex.  相似文献   

8.
Summary Conjugal mobility of ColE1 and related plasmids is promoted by a wide range of conjugative plasmids. ColE1 produces trans-acting products and has a region required in cis (bom; basis of mobility) for such mobility. Here we show that plasmid pBR322 contains a functional bom sequence located within a 141 bp HhaI fragment. This bom region is functional for conjugation promoted by several different conjugative plasmids and is highly conserved in ColE1 and contains nic the putative origin of transfer. The orientation and position of bom with respect to the ColE1 vegetative origin of replication can be changed without affecting the frequency of conjugal mobility promoted by R64drd11.  相似文献   

9.
MbeA is a 60 kDa protein encoded by plasmid ColE1. It plays a key role in conjugative mobilization. MbeA*, a slightly truncated version of MbeA, was purified for in vitro analysis. MbeA* catalysed DNA cleavage and strand-transfer reactions using oligonucleotides embracing the ColE1 nic site, which was mapped to 5'-(1469)CTGG/CTTA(1462)-3'. Thus MbeA is the relaxase for ColE1 conjugal mobilization, in spite of the fact that it lacks a three histidine motif considered the invariant signature of conjugative relaxases. Amino acid sequence comparisons suggest MbeA is nevertheless related to the common relaxase protein family. For instance, MbeA residue Y19 could correspond to the invariant tyrosine in Motif I, whereas H97, E104 and N106 may constitute the equivalent residues to the histidine triad in Motif III. This hypothesis was tested by site-directed mutagenesis. MbeA amino acid residues Y19, H97, E104 and N106 were changed to alanine. MbeA mutant N106A showed reduced oligonucleotide cleavage and strand-transfer activities, whereas mutation in the other three residues resulted in proteins without detectable activity, suggesting they are directly implicated in catalysis of DNA-cleavage and strand-transfer reactions. A double substitution of E104 and N106 by histidines, therefore reconstituting the canonical histidine triad, restored relaxase activities to 1% of wild type. Thus, MbeA is a variant of the common relaxase theme with a HEN signature motif, which has to be added to the canonical three histidine motif of previously reported relaxases.  相似文献   

10.
The RecA loading activity of the RecBCD enzyme, together with its helicase and 5' --> 3' exonuclease activities, is essential for recombination in Escherichia coli. One particular mutant in the nuclease catalytic center of RecB, i.e., recB1080, produces an enzyme that does not have nuclease activity and is unable to load RecA protein onto single-stranded DNA. There are, however, previously published contradictory data on the recombination proficiency of this mutant. In a recF(-) background the recB1080 mutant is recombination deficient, whereas in a recF(+) genetic background it is recombination proficient. A possible explanation for these contrasting phenotypes may be that the RecFOR system promotes RecA-single-strand DNA filament formation and replaces the RecA loading defect of the RecB1080CD enzyme. We tested this hypothesis by using three in vivo assays. We compared the recombination proficiencies of recB1080, recO, recR, and recF single mutants and recB1080 recO, recB1080 recR, and recB1080 recF double mutants. We show that RecFOR functions rescue the repair and recombination deficiency of the recB1080 mutant and that RecA loading is independent of RecFOR in the recB1080 recD double mutant where this activity is provided by the RecB1080C(D(-)) enzyme. According to our results as well as previous data, three essential activities for the initiation of recombination in the recB1080 mutant are provided by different proteins, i.e., helicase activity by RecB1080CD, 5' --> 3' exonuclease by RecJ- and RecA-single-stranded DNA filament formation by RecFOR.  相似文献   

11.
The heritable stability of ColE1 is dependent on a site-specific recombination system which acts to resolve plasmid multimers into monomers. This plasmid stabilizing recombination system requires the presence in cis of the ColE1 cer region, plus at least two trans-acting factors encoded by the xerA and xerB genes of Escherichia coli. The xerB gene has been cloned and sequenced and found to encode a polypeptide with a calculated mol. wt of 55.3 kd. The predicted amino acid sequence of this protein exhibits striking similarity to that of bovine lens leucine aminopeptidase (53 kd). The biological significance of this similarity is corroborated by genetic and biochemical evidence which suggests that xerB is identical to the E.coli and S.typhimurium pepA genes that encode aminopeptidase A.  相似文献   

12.
The concept of gene identification and cloning using insertional mutagenesis is well established. Many genes have been isolated using T-DNA transformation or transposable elements. Maize transposable elements have been introduced into heterologous plant species for tagging experiments. The behaviour of these elements in heterologous hosts shows many similarities with transposon behaviour in Zea mays. Site-specific recombination systems from lower organisms have also been shown to function efficiently in plant cells. Combining transposon and site-specific recombination systems in plants would create the possibility to induce chromosomal deletions. This transposition-deletion system could allow the screening of large segments of the genome for interesting genes and may also permit the cloning of the DNA corresponding to the deleted material by the same site-specific recombination reaction in vitro. This methodology may provide a unique means to construct libraries of large DNA clones derived from defined parts of the genome, the phenotypic contribution of which is displayed by the mutant carrying the deletion.  相似文献   

13.
The Gin DNA-inversion system of bacteriophage Mu normally requires a substrate containing two inverted recombination sites (gix) and an enhancer sequence on the same supercoiled DNA molecule. The reaction mechanism was investigated by separating these sites on catenated rings. Catenanes with the gix sites on one circle and the enhancer on the other recombined efficiently. Thus, the enhancer was fully functional even though it was located in trans to the gix sites. Multiple links between the rings are required for recombination. Multiply linked catenanes with gix sites on separate circles, one of which contained the enhancer, were also efficient substrates. Knotted constructs carrying directly repeated gix sites were recombined. Catenated and knotted substrates must also be supercoiled. These experiments eliminate simple tracking or looping models as explanations for why the enhancer and gix sites must be in cis with standard substrates. Rather, the Gin synaptic complex requires the three sites to be mutually intertwined in a right-handed fashion with a unique polarity of the gix sites. This geometry is achieved by branching of the DNA substrate and requires the energy and structure of supercoiling, catenation, or knotting.  相似文献   

14.
Homologous recombination (HR) is one of the central processes of DNA metabolism, combining roles in both cell housekeeping and the evolution of genomes. In eukaryotes, HR underlies meiosis and ensures genome stability. The complete sequencing of numerous bacterial genomes has shown that HR has a substantial role in the evolution of microorganisms, especially pathogens. HR systems from different species and their isolated components are finding an expanding field of applications in modern genetic engineering and bio- and nanotechnologies. Recently, much progress has been made in our understanding of HR mechanisms in eukaryotes and the practical applications of HR systems.  相似文献   

15.
Inversion of the G segment in bacteriophage Mu DNA occurs by a site-specific recombination event and determines the host specificity of Mu phage particles produced. Inversion is mediated by a Mu function (Gin). The gin gene has been placed under control of the inducible λ pL promoter and a synthetic Shine-Dalgarno linker upstream of the initiation codon. The Gin protein content in induced cells is boosted to ˜10% of total protein. Partially purified extracts from overproducing strains promote efficient inversion of the G DNA segment in vitro which is visualized by agarose gel electrophoresis of the substrate DNA after cutting with appropriate restriction endonucleases. The in vitro reaction requires Mg2+, a super-coiled DNA substrate and occurs in the absence of exogenous ATP. Inversion from the G(+) to the G(−) orientation is as efficient as the switch from G(−) to G(+).  相似文献   

16.
M A Krasnow  N R Cozzarelli 《Cell》1983,32(4):1313-1324
We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.  相似文献   

17.
We report the construction and analysis of a Bacteroides thetaiotaomicron recA disruption mutant and an investigation of whether RecA is required for excision and integration of Bacteroides mobile DNA elements. The recA mutant was deficient in homologous recombination and was more sensitive than the wild-type strain to DNA-damaging agents. The recA mutant was also more sensitive to oxygen than the wild type, indicating that repair of DNA contributes to the aerotolerance of B. thetaiotaomicron. Many Bacteroides clinical isolates carry self-transmissible chromosomal elements known as conjugative transposons. These conjugative transposons can also excise and mobilize in trans a family of unlinked integrated elements called nonreplicating Bacteroides units (NBUs). The results of a previous study had raised the possibility that RecA plays a role in excision of Bacteroides conjugative transposons, but this hypothesis could not be tested in Bacteroides spp. because no RecA-deficient Bacteroides strain was available. We report here that the excision and integration of the Bacteroides conjugative transposons, as well as NBU1 and Tn4351, were unaffected by the absence of RecA activity.  相似文献   

18.
The polypeptide encoded by a segment of a gene required for the conjugal mobilization of the broad host-range plasmid R1162 has been purified as a beta-galactosidase fusion protein. The hybrid protein binds specifically to a small, double-stranded DNA fragment containing the origin of transfer (oriT), and specifically cleaves oriT single-stranded DNA at the position cleaved during transfer. Only one of the two DNA strands is a substrate. A fraction of the digested DNA is resistant to lambda exonuclease digestion, indicating that some molecules have protein covalently attached at the 5' end. After prolonged incubation with fusion protein, some of the cleaved molecules are religated. In vivo, M13 phage DNA containing two, directly-repeated copies of oriT recombine in cells containing the fusion protein. The single-stranded viral DNA forms are the probable substrates for the protein, the cleaved DNA being subsequently religated to form recombinant molecules. Cleavage of the DNA might be the reverse reaction of the ligation that normally takes place after conjugative transfer of a single, linear plasmid DNA strand.  相似文献   

19.
20.
We report the isolation of two mutations in the gyrB gene of Escherichia coli K12 obtained from an initial selection for resistance to coumermycin A1 and a subsequent screening for bacteria that fail to support site-specific recombination of phage lambda, i.e., Him-. These two mutations have a temperature-sensitive Him- phenotype, supporting site-specific recombination efficiently at low temperature, but inefficiently at high temperatures. Like other Him mutants, the gyrB-him mutants fail to plate phage Mu; again this defect is observed only at high temperatures. Additional thermally sensitive characteristics have also been observed; growth of lambda as well as maintenance of the plasmids pBR322 and F' gal are reduced at high temperature. Restriction of foreign DNA imposed by a P1 prophage is also reduced in these mutants. The temperature-sensitive phenotypic characteristics imposed by both the gyrB-him-230(Ts) and gyrB-him-231(Ts) mutations correlate with in vitro studies that show decreased gyrase activity, especially at higher temperatures, and in vivo studies showing reduced supercoiling of lambda DNA in the mutants at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号