首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A compilation of studies using RAPD markers for evaluating population differentiation resulted in 78 estimates of AMOVA-derived ΦST and 31 estimates of Nei's GST, as well as in 41 estimates of Nei's within-population diversity. In outcrossing taxa, estimates of between-population diversity were closely correlated with maximum geographic distance between sampled populations. A corresponding association was not found in selfing taxa. These results suggest that RAPD can be a sensitive method for detection of genetic structuring according to the isolation-by-distance model. However, it also means that sampling strategies, as applied in individual studies, can seriously influence the resulting estimates of between-population diversity. Other sampling strategies, like number of plants per population and number of scored polymorphic markers, do not seem to impart any serious artefacts. As previously verified with allozyme data, RAPD markers showed that long-lived, outcrossing, late successional taxa retain most of their genetic variability within populations. By contrast, annual, selfing and/or early successional taxa allocate most of the genetic variability among populations. Estimates for between- and within-population diversity, respectively, proved to be negatively correlated, as previously reported for allozyme data. The only major discrepancy between allozymes and RAPD markers concerns geographic range; within-population diversity was strongly affected by distributional range of the investigated species in the allozyme data but not in the RAPD data. Moreover, RAPD-based values for between-population diversity increased with increasing distributional range whereas the opposite has been reported in a large allozyme data compilation. Contrary to allozymes, RAPD marker-derived within-population diversity is probably therefore not a very good predictor of total species genetic diversity.  相似文献   

2.
Using RAPD markers and one morphological marker, we studied the among- and within-population structure in a selfing annual plant species, Medicago truncatula GAERTN. About 200 individuals, sampled from four populations subdivided into three subpopulations each, were scored for 22 markers. It was found that the within-population variance component accounted for 55% of the total variance, while the among-population variance component accounted for 45%. Eighteen percent of the total variance was due to within-population structure (i.e., among subpopulations). Thus, 37% of the total variance was within subpopulations. Using a multilocus approach, it was found that no multilocus genotype was common to two populations. Two of the four studied populations were composed of few (≤6) multilocus genotypes, whereas the other two had many (≥15) multilocus genotypes. In the most polymorphic population (37 genotypes), only one genotype was found to be common to two subpopulations. Resampling experiments show that, depending on the population, three to 16 polymorphic loci were necessary and sufficient to score all multilocus genotypes in the population. When these data are compared to published results, it appears that on some occasions, the number of genotypes per population of selfing species might be larger than would be expected from the sole consideration of effective population size. The large within-subpopulation genetic variance observed in some populations could be explained by either small neighborhood sizes within subpopulations, or by outcrossing following migration through seed and/or pollen.  相似文献   

3.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

4.
Using randomly amplified polymorphic DNA markers (RAPD), genetic variation and differentiation in four populations of pedunculate oak Quercus robur L. were examined. The populations occupy a large part of the Quercus robur range in the European Russia (Voronezh and Novgorod oblasts; Republics of Mordovia and Bashkortostan). With each of six random primers (A02, A09, A17, B01, B08, B11), 96 DNA samples were analyzed by PCR. In all, 48 putative polymorphic RAPD loci were detected. We failed to reveal population-specific DNA fragments for any primer although the frequencies of 14 fragments were significantly different among populations. The oak populations studied exhibited high variability: 73–90% of genes were polymorphic and the effective allele number was about 1.4. The total genetic variation varied from 0.202 (Vor) to 0.245 (Nov), which corresponded to the estimates for populations of this species from Central and Western Europe. The populations examined showed low among-population differentiation (G ST = 0.098); gene flow N e m was 4.61. The proportion of among-population variation of the RAPD loci studied accounted for 7% of the total variability; more than 93% of the total variability was explained by individual and within-population variation.  相似文献   

5.
We examined the patterns of random amplified polymorphic DNA (RAPD) variation among seven Prunus mahaleb (Rosaceae) populations extending over approximately 100 km2 to examine local differentiation in relation to spatial isolation due to both geographical distance and differences in elevation. No less than 51. 4% of the RAPD loci were polymorphic, but very few were fixed and among-population variation accounted for 16.46% of variation in RAPD patterns. Mean gene diversity was 0.1441, with mean Nei's genetic diversity for individual populations ranging between 0.089 and 0.149. Mean GST value across loci was 0.1935 (range, 0.0162-0.4685), giving an average estimate for Nm of 1.191. These results suggest extensive gene flow among populations, but higher GST and lower Nm values relative to other outcrossing, woody species with endozoochorous dispersal, also suggest a process of isolation by distance. The combined effect of both geographical and elevation distances and nonoverlapping flowering and fruiting phenophases on the GST matrix was partially significant, revealing only marginal isolation of the P. mahaleb populations. The matrix correlation between estimated Nm values among populations and the geographical + elevation distance matrices (r = -0.4623, P = 0.07), suggests a marginal trend for more isolated populations to exchange less immigrants. Long-distance seed dispersal by efficient medium-sized frugivorous birds and mammals is most likely associated to the high levels of within-population genetic diversity. However, vicariance factors and demographic bottlenecks (high postdispersal seed and seedling mortality) explain comparatively high levels of local differentiation.  相似文献   

6.
Hippophae rhamnoides is an outcrossing pioneer plant species with a severely fragmented distribution. Random amplified polymorphic DNA (RAPD) marker variation was analysed in 10 populations of ssp. rhamnoides and in one population of ssp. mongolica to estimate the amount and distribution of genetic variability. No less than 89.7% of the scorable markers were polymorphic, but few of these were fixed and populations consequently differed mainly by frequency variation of individual markers. Within-population gene diversity was somewhat low for an outcrossing plant species: 0.192 or 0.159 for ssp. rhamnoides , depending on whether it was based on all 156 polymorphic RAPDs or on only those 63 RAPDs that fulfilled the 3/ N criterion. Analysis of molecular variance applied to the ssp. rhamnoides showed only 15% between-population variability, indicating a relatively restricted population differentiation as expected in outcrossing species and shown in several other AMOVA studies. The tendency for island populations to be somewhat more differentiated, and to have less within-population diversity than mainland populations, may indicate an effect of population fragmentation. Genetic distance estimates among populations, obtained with and without pruning of RAPD loci on the basis of the 3/ N criterion, were generally in very good agreement. Cluster analyses and principal coordinate analyses showed populations of ssp. rhamnoides to be rather close, but quite isolated from the single ssp. mongolica population. Genetic and geographical distances between the ssp. rhamnoides populations were not associated, indicating that large-scale geographical and ecotypic differentiation was not reflected in the RAPD profiles.  相似文献   

7.
 The genetic structure of wild common bean populations was studied in the South-Andean centre of origin of the species. Plants were collected from 21 populations in Argentina and genetic variability was assessed for molecular and resistance markers. Polymorphism was weak for phaseolin, the major seed-storage protein, and for RAPD markers, while a high level of polymorphism was observed for resistance to anthracnose, one of the most important diseases of common bean. For the three traits, within-population variability was important and represented between 43.6% and 67.5% of the total variation. Although among-population differentiation was significant for all the traits, no correlation was found between the population distances calculated from RAPDs and resistance. These results indicate that pathogen selection pressure may be an important factor influencing the distribution of variability within and among host plant populations. Received: 28 October 1997 / Accepted: 25 November 1997  相似文献   

8.
Genetic diversity has been investigated by the application of molecular markers in, for the first time, all the taxa recognised in recent treatises of the genusHippophae. RAPD (random amplified polymorphic DNA) analyses were conducted with 9 decamer primers, which together yielded 219 polymorphic markers. We found 16 fixed RAPD markers, i.e. markers that either occurred in all plants of a population or were absent from all plants. Several of these markers were useful for analysis of interspecific relationships, whereas others can be considered as taxon-specific markers. Clustering of taxa and populations in our neighbour-joining based dendrogram was in good agreement with some recently suggested taxonomic treatises ofHippophae. Amount and distribution of genetic variability varied considerably between species. Partitioning of molecular variance withinH. rhamnoides supported earlier findings that a considerable part of the total variance resides among subspecies (59.6%) Within-population variability also differed considerably. Percentage polymorphic RAPD loci and Lynch and Milligan within-population gene diversity estimates showed relatively high values for some species close to the geographic centre of origin in Central Asia, e.g.H. tibetana and the putatively hybridogenousH. goniocarpa. Spatial autocorrelation analyses performed on 12 populations ofH. rhamnoides revealed positive autocorrelation of allele frequencies when geographic distances ranged from 0 to 700 km, and no or negative autocorrelation at higher distances. At distances between 700 and 1900 km, we observed deviations from the expected values with strongly negative autocorrelation of allele frequencies. A corresponding relationship between geographic and genetic distances could not be found when the analysis instead was based on one population from each of 8 species.  相似文献   

9.
Eremanthus erythropappus, commonly known as "candeia", is an abundant pioneer tree species, forming dense populations known as "candeial", but it is also found in forests at middle stages of succession. Trees from forests are bigger and occur in lower density than in the "candeial". The objectives of the present study were to investigate if the decrease in population density during successional process is accompanied by 1) changes in within-population genetic diversity, and 2) differentiation of populations. Eight populations, four of early successional stage ("candeial") and four of middle successional stages (forest), were analyzed with RAPD markers. The genetic diversity found was high compared to other tree species analyzed with RAPD markers. AMOVA revealed that most of the genetic variations of E. erythropappus were found within populations (85.7%), suggesting that this species is predominantly outcrossing. The relatively low differentiation among the populations can be attributed to small distances among the populations analyzed (0.2 to 10.8 km). No indication that populations from middle successional habitats show lower genetic variation than populations from early successional stages was found. The percentage of polymorphic fragments (82.8 and 84.8%) and the Shannon indexes (0.442 and 0.455) were similar in "candeial" and forest, respectively. These results suggest that if an increase in selection intensity occurred during succession, it did not result in a decrease in genetic diversity or that the selection effect was balanced by other factors, such as gene flow. Higher significant differentiation among E. erythropappus populations from "candeial" in relation to that among populations from forest was also not detected.  相似文献   

10.
There is growing interest in quantifying genetic population structure across the geographical ranges of species to understand why species might exhibit stable range limits and to assess the conservation value of peripheral populations. However, many assertions regarding peripheral populations rest on the long-standing but poorly tested supposition that peripheral populations exhibit low genetic diversity and greater genetic differentiation as a consequence of smaller effective population size and greater geographical isolation relative to geographically central populations. We reviewed 134 studies representing 115 species that tested for declines in within-population genetic diversity and/or increases in among-population differentiation towards range margins using nuclear molecular genetic markers. On average, 64.2% of studies detected the expected decline in diversity, 70.2% of those that tested for it showed increased differentiation and there was a positive association between these trends. In most cases, however, the difference in genetic diversity between central and peripheral population was not large. Although these results were consistent across plants and animals, strong taxonomic and biogeographical biases in the available studies call for a cautious generalization of these results. Despite the large number of studies testing these simple predictions, very few attempted to test possible mechanisms causing reduced peripheral diversity or increased differentiation. Almost no study incorporated a phylogeographical framework to evaluate historical influences on contemporary genetic patterns. Finally, there has been little effort to test whether these geographical trends in putatively neutral variation at marker loci are reflected by quantitative genetic trait variation, which is likely to influence the adaptive potential of populations across the geographical range.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) was used to assess the genetic structure of Hemileia vastatrix populations. Forty-five rust isolates with different virulence spectra and from different hosts and geographical regions were analyzed. Out of 45 bands, generated with three RAPD primers, 35 (78%) were polymorphic and scored as molecular markers. Cluster analysis exhibits unstructured variability of this pathogen with regard to physiological race, geographical origin or host. The genotypic diversity (H') inferred from Shannon's index was higher than gene diversity (Ht), suggesting that diversity is distributed among clonal lineages. Estimates of gene diversity in Africa and Asia populations were higher in total (Ht) as compared to within population diversity (Hs). Genetic differentiation was considerable among coffee rust isolates from Africa (Gst = 0.865) and Asia (Gst = 0.768) but not among isolates from South America (Gst = 0.266). We concluded that genetic diversity in H. vastatrix was moderately low and that the genetic differentiation among populations shows that asexual reproduction is likely to play an important role in the population biology of this fungus. This should be taken into account for the development of breeding programs.  相似文献   

12.
Few studies investigated whether rapid range expansion is associated with an individual''s short-term fitness costs due to an increased risk of inbred mating at the front of expansion. In mating systems with low male mating rates both sexes share potential inbreeding costs and general mechanisms to avoid or reduce these costs are expected. The spider Argiope bruennichi expanded its range recently and we asked whether rapid settlement of new sites exposes individuals to a risk of inbreeding. We sampled four geographically separated subpopulations, genotyped individuals, arranged matings and monitored hatching success. Hatching success was lowest in egg-sacs derived from sibling pairs and highest in egg-sacs derived from among-population crosses, while within-population crosses were intermediate. This indicates that inbreeding might affect hatching success in the wild. Unlike expected, differential hatching success of within- and among-population crosses did not correlate with genetic distance of mating pairs. In contrast, we found high genetic diversity based on 16 microsatellite markers and a fragment of the mitochondrial COI gene in all populations. Our results suggest that even a very recent settlement secures the presence of genetically different mating partners. This leads to costs of inbreeding since the population is not inbred.  相似文献   

13.
Using randomly amplified polymorphic DNA markers (RAPD), genetic variation and differentiation in four populations of pedunculate oak Quercus robur L. were examined. The populations occupy a large part of the Quercus robur range in the European Russia (Voronezh and Novgorod oblasts; Republics of Mordovia and Bashkortostan). With each of six random primers (A02, A09, A17, B01, B08, B11), 96 DNA samples were analyzed by PCR. In all, 48 putative polymorphic RAPD loci were detected. We failed to reveal population-specific DNA fragments for any primer although the frequencies of 14 fragments were significantly different among populations. The oak populations studied exhibited high variability: 73-90% of genes were polymorphic and the effective allele number was about 1.4. The total genetic variation varied from 0.202 (Vor) to 0.245 (Nov), which corresponded to the estimates for populations of this species from Central and Western Europe. The populations examined showed low among-population differentiation (GST = 0.098); gene flow Nem was 4.61. The proportion of among-population variation of the RAPD loci studied accounted for 7% of the total variability; more than 93% of the total variability was explained by individual and within--population variation.  相似文献   

14.
Plathymenia reticulata is a tropical tree native to the Brazilian Cerrado, one of the most important and endangered ecosystems in Brazil. This species presents high-quality wood and potential for recovery of degraded areas. Despite its importance, almost nothing is known about its genetic or ecological features. Random amplified polymorphic DNA (RAPD) markers were used to investigate the genetic diversity and structure of six natural populations of P. reticulata. DNAs from 117 adult individuals were amplified with 10 random primers and Shannon's index and amova were used to evaluate the levels of genetic diversity within and among populations. Through 72 markers, 70.8% of which were polymorphic, it was possible to obtain 117 unique RAPD phenotypes. The levels of genetic variability found in the six populations of P. reticulata were considerable and most of the genetic variation was found between individuals within populations, although pairwise PH(ST) values indicated significant divergence between populations. The among-population component accounted for, respectively, 12.3% and 16% of the genetic variation, according to amova and Shannon's index. These results were compared with other genetic studies on plant species and such a level of differentiation among populations corresponds to that which has usually been observed for outcrossing plants. The importance of maintenance of the P. reticulata populations and implications of the analysis of adult individuals, considering the longevity of this species and the relatively recent Cerrado fragmentation, are discussed.  相似文献   

15.
Prathepha P  Baimai V 《Genetica》1999,105(2):193-202
Genetic diversity within and among populations was investigated using RAPD-PCR assays in a rare species, Afgekia sericea Craib. Two hundred and sixty-nine individuals were sampled from nine geographically isolated populations from northeastern Thailand. This study includes 73 RAPD markers. Within population polymorphism as measured by percentage of polymorphic RAPDs, varied between 38.4% and 60.3%. Genetic variability was measured using Shannon's information index and partitioned into between- and within-population components. Overall, genetic variation among A. sericea populations was high (Hsp-Hpop)/Hsp=48.2%. The genetic diversity for the species (Hsp) was 43.2%. Mean of within-population values (Hpop) for all populations was 0.224. The total genetic diversity was explained by high variation among populations (mean Gst=0.426), which is consistent with low gene flow among populations (Nm=0.35). High between-population genetic variation observed in this study could be explained by limited migration through seed and/or pollen dispersal among populations. Conservation strategies of A. sericea are discussed in the context of these results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Genetic diversity and geographic distribution of taxon-specific RAPD markers was examined in ten local populations of the house mouse Mus musculus (n = 42). The house mice were generally characterized by moderate genetic variation: polymorphism P99 = 60%, P95 = 32.57%; heterozygosity H = 0.12; the observed allele number n(a) = 1.6; the effective allele number n(e) = 1.18; the within-population differentiation Theta = 0.388; and Shannon index I = 0.19. The degree of genetic isolation of individual local populations was greatly variable. The genetic subdivision index G(st) varied from 0.162 to 0.770 at the gene flow of Nm = 2.58-0.149, while the among-population distances D(N) varied from 0.026 to 0.178. of the largest part of the genetic diversity was found among the populations (H(T) = 0.125), while the within-population diversity was twice lower (H(S) = 0.06). The samples examined were well discriminated relative to the sets of RAPD markers. The character distribution pattern provided conditional subdivision of the mice into the "western" and the "eastern" groups with the putative boarder along the Baikal Lake. The first group was characterized by the prevalence of the markers typical of M. m. musculus and M. m. domesticus. The second group was characterized by the prevalence of the markers typical of M. m. musculus, M. m. gansuensis, M. m. castaneus, M. m. domesticus, and m. m. wagneri. The genotype of the nominative subspecies M. m. musculus was background for all populations. In the populations examined some of earlier described subspecies-specific molecular markers were found at different frequencies, pointing to the involvement of several subspecies of M. musculus in the process of hybridization.  相似文献   

17.
Abstract

This study represents a preliminary step toward understanding the genetic structure of Persian oak in Iran. The genetic variability of Quercus brantii in Western forest of Iran was evaluated by amplified fragment length polymorphism (AFLP), chloroplast microsatellite and leaf morphology. Fifty-five trees from eight regions were sampled from across the range of Chaharmahal va Bakhtiari province of Iran. Twenty morphological traits were analyzed through clustering and ordination method. At morphological level, the applied statistics suggest that macromorphological traits significantly differentiate between populations. The overall sample shows a proportion of AFLP polymorphic markers of 92.1%, denoting a high level of variability. Based on AFLP data, differences among populations within geographic regions account for 11.6% of the total variation and only 0.57% is attributed to variation among regions. Based on chloroplast microsatellite (cpSSR), 34% of total variation was found among populations, suggesting a high within-population haplotype diversity. The dendrogram obtained from cpSSR showed a general pattern quite different from the pattern obtained from morphological analysis and AFLP markers.  相似文献   

18.
The polymerase chain reaction–random amplified polymorphic DNA (PCR–RAPD) technique was used to examine genetic variability and population structuring in the four-wing flyingfish, Hirundichthys affinis within the central western Atlantic. Three random decamer primers and pairs of these primers were used to amplify nuclear DNA from 360 fish sampled from six populations (at five locations) across the region. A total of 58 polymorphic RAPD markers were identified, 20 of which were population-specific and six of which were subregional or stock-specific markers. Cluster analysis of similarity indices indicated the presence of three genetically distinct subregional stocks located in the eastern Caribbean, southern Netherlands Antilles and Brazil, respectively. Estimates of gene diversity (φ) and gene flow ( Nm ) are consistent with this three-stock hypothesis. Furthermore, partially restricted gene flow was apparent among spatially and temporally separate sampled populations within the eastern Caribbean subregional stock, indicating the possible presence of different spawning groups. These results are entirely consistent with those obtained from PCR–RFLP analysis of the mtDNA D-loop in the same fish, indicating the presence of barriers to dispersal and interbreeding in both sexes. We conclude that the PCR–RAPD technique is suitable for determining population stock structure in this species and that a three-stock approach to managing H. affinis within the central western Atlantic would be appropriate.  相似文献   

19.
Random amplified polymorphic DNA (RAPD) analysis was used to characterize genetic diversity and genetic distinctiveness of Andropogon gerardii from remnant Arkansas prairies. Six oligonucleotide primers, which generated 37 RAPD bands, were used to analyse 30-32 plants from six Grand Prairie populations, Baker Prairie (Arkansas Ozarks), two Illinois prairies and two cultivars. Genetic diversity of the Arkansas remnants ranged from 82.7 to 99.3%, with 89% of the total genetic variation within and 11% among populations. The partitioning of genetic variation was consistent with that reported for other outcrossing perennial grasses, using the more conservative allozyme markers. Principal component analysis indicated a northern and southern association within Arkansas' Grand Prairie. Although there was no genetic structuring at the landscape level, the Illinois prairies and cultivars were different from all Arkansas prairies tested. There was significant within-population structuring in four of the seven Arkansas remnants, with a negative relationship between genetic similarity and geographical distance. The three nonstructured populations were from a linear railroad remnant, suggesting different population-level dynamics from nonlinear prairies. The results of this study indicated that small isolated remnant big bluestem populations were not genetically depauperate and that genetic relationships among populations could not be predicted solely on geographical proximity.  相似文献   

20.
The global pattern of variation at the homologous microsatellite loci DYS413 (Yq11) and DXS8174 and DXS8175 (Xp22) was analyzed by examination of 30 world populations from four continents, accounting for more than 1,100 chromosomes per locus. The data showed discordant patterns of among- and within-population gene diversity for the Y-linked and the X-linked microsatellites. For the Y-linked polymorphism, all groups of populations displayed high FST values (the correlation between random haplotypes within subpopulations, relative to haplotypes of the total population) and showed a general trend for the haplotypes to cluster in a population-specific way. This was especially true for sub-Saharan African populations. The data also indicated that a large fraction of the variation among populations was due to the accumulation of new variants associated with the radiation process. Europeans exhibited the highest level of within-population haplotype diversity, whereas sub-Saharan Africans showed the lowest. In contrast, data for the two X-linked polymorphisms were concordant in showing lower FST values, as compared with those for DYS413, but higher within-population variances, for African versus non-African populations. Whereas the results for the X-linked loci agreed with a model of greater antiquity for the African populations, those for DYS413 showed a confounding pattern that is apparently at odds with such a model. Possible factors involved in this differential structuring for homologous X and Y microsatellite polymorphisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号