首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Adiponectin, one of the insulin-sensitizing adipokines, has been shown to activate fatty acid oxidation in liver and skeletal muscle, thus maintaining insulin sensitivity. However, the precise roles of adiponectin in fatty acid synthesis are poorly understood. Here we show that adiponectin administration acutely suppresses expression of sterol regulatory element-binding protein (SREBP) 1c, the master regulator which controls and upregulates the enzymes involved in fatty acid synthesis, in the liver of +Leprdb/+Leprdb (db/db) mouse as well as in cultured hepatocytes. We also show that adiponectin suppresses SREBP1c by AdipoR1, one of the functional receptors for adiponetin, and furthermore that suppressing either AMP-activated protein kinase (AMPK) via its upstream kinase LKB1 deletion cancels the negative effect of adiponectin on SREBP1c expression. These data show that adiponectin suppresses SREBP1c through the AdipoR1/LKB1/AMPK pathway, and suggest a possible role for adiponectin in the regulation of hepatic fatty acid synthesis.  相似文献   

7.
Cold adaptation elicits a paradoxical simultaneous induction of fatty acid synthesis and β-oxidation in brown adipose tissue. We show here that cold exposure coordinately induced liver X receptor α (LXRα), adipocyte determination and differentiation-dependent factor 1 (ADD1)/sterol regulatory element-binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) in brown and inguinal white adipose tissues, but not in epididymal white adipose tissue. Using in vitro models of white and brown adipocytes we demonstrate that β-adrenergic stimulation induced expression of LXRα, ADD1/SREBP1c and PGC1α in cells with a brown-like adipose phenotype. We demonstrate that ADD1/SREBP1c is a powerful inducer of PGC1α expression via a conserved E box in the proximal promoter and that β-adrenergic stimulation led to recruitment of ADD1/SREBP1c to this E box. The ability of ADD1/SREBP1c to activate the PGC1α promoter exhibited a striking cell type dependency, suggesting that additional cell type-restricted factors contribute to ADD1/SREBP1c-mediated activation. In conclusion, our data demonstrate a novel role of ADD1/SREBP1c as a regulator of PGC1α expression in brown adipose tissue.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
The peroxisomal ATP binding cassette (ABC) transporter adrenoleukodystrophy-related protein, encoded by ABCD2, displays functional redundancy with the X-linked adrenoleukodystrophy-associated protein, making ABCD2 up-regulation of therapeutic value. Cholesterol lowering activates human ABCD2 in cultured cells. To investigate in vivo regulation by sterols, we first characterized a sterol regulatory element (SRE) in the murine Abcd2 promoter that is directly bound by SRE-binding proteins (SREBPs). Intriguingly, this element overlaps with a direct repeat 4, which serves as binding site for liver X receptor (LXR)/retinoid X receptor heterodimers, suggesting novel cross-talk between SREBP and LXR/retinoid X receptor in gene regulation. Using fasting-refeeding and cholesterol loading, SREBP accessibility to the SRE/direct repeat 4 was tested. Results suggest that adipose Abcd2 is induced by SREBP1c, whereas hepatic Abcd2 expression is down-regulated by concurrent activation of LXRalpha and SREBP1c. In cell culture, SREBP1c-mediated Abcd2 induction is counteracted by ligand-activated LXRalpha. Finally, hepatic Abcd2 expression in LXRalpha,beta-deficient mice is inducible to levels vastly exceeding wild type. Together, we identify LXRalpha as negative modulator of Abcd2, acting through a novel regulatory mechanism involving overlapping SREBP and LXRalpha binding sites.  相似文献   

17.
18.
19.
Overexpression of the adipocyte differentiation and determination factor-1 (ADD-1) or sterol regulatory element binding protein-1 (SREBP-1) induces the expression of numerous genes involved in lipid metabolism, including lipoprotein lipase (LPL). Therefore, we investigated whether LPL gene expression is controlled by changes in cellular cholesterol concentration and determined the molecular pathways involved. Cholesterol depletion of culture medium resulted in a significant induction of LPL mRNA in the 3T3-L1 preadipocyte cell line, whereas addition of cholesterol reduced LPL mRNA expression to basal levels. Similar to the expression of the endogenous LPL gene, the activity of the human LPL gene promoter was enhanced by cholesterol depletion in transient transfection assays, whereas addition of cholesterol caused a reversal of its induction. The effect of cholesterol depletion upon the human LPL gene promoter was mimicked by cotransfection of expression constructs encoding the nuclear form of SREBP-1a, -1c (also called ADD-1) and SREBP-2. Bioinformatic analysis demonstrated the presence of 3 potential sterol regulatory elements (SRE) and 3 ADD-1 binding sequences (ABS), also known as E-box motifs. Using a combination of in vitro protein-DNA binding assays and transient transfection assays of reporter constructs containing mutations in each individual site, a sequence element, termed LPL-SRE2 (SRE2), was shown to be the principal site conferring sterol responsiveness upon the LPL promoter. These data furthermore underscore the importance of SRE sites relative to E-boxes in the regulation of LPL gene expression by sterols and demonstrate that sterols contribute to the control of triglyceride metabolism via binding of SREBP to the LPL regulatory sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号