首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level.  相似文献   

2.
Raffinose and stachyose are ubiquitous galactosyl-sucrose oligosaccharides in the plant kingdom which play major roles, second only to sucrose, in photoassimilate translocation and seed carbohydrate storage. These sugars are initially metabolised by alpha-galactosidases (alpha-gal). We report the cloning and functional expression of the first genes, CmAGA1 and CmAGA2, encoding for plant alpha-gals with alkaline pH optima from melon fruit (Cucumis melo L.), a raffinose and stachyose translocating species. The alkaline alpha-gal genes show very high sequence homology with a family of undefined 'seed imbibition proteins' (SIPs) which are present in a wide range of plant families. In order to confirm the function of SIP proteins, a representative SIP gene, from tomato, was expressed and shown to have alkaline alpha-gal activity. Phylogenetic analysis based on amino acid sequences shows that the family of alkaline alpha-gals shares little homology with the known prokaryotic and eukaryotic alpha-gals of glycosyl hydrolase families 27 and 36, with the exception of two cross-family conserved sequences containing aspartates which probably function in the catalytic step. This previously uncharacterised, plant-specific alpha-gal family of glycosyl hydrolases, with optimal activity at neutral-alkaline pH likely functions in key processes of galactosyl-oligosaccharide metabolism, such as during seed germination and translocation of RFO photosynthate.  相似文献   

3.
The ADP/ATP translocator, a transmembrane protein of the mitochondrial inner membrane, is coded in Saccharomyces cerevisiae by the nuclear gene PET9. DNA sequence analysis of the PET9 gene showed that it encoded a protein of 309 amino acids which exhibited a high degree of homology with mitochondrial translocator proteins from other sources. This mitochondrial precursor, in contrast to many others, does not contain a transient presequence which has been shown to direct the posttranslational localization of proteins in the organelle. Gene fusions between the PET9 gene and the gene encoding beta-galactosidase (lacZ) were constructed to define the location of sequences necessary for the mitochondrial delivery of the ADP/ATP translocator protein in vivo. These studies reveal that the information to target the hybrid molecule to the mitochondria is present within the first 115 residues of the protein. In addition, these studies suggest that the "import information" of the amino-terminal region of the ADP/ATP translocator precursor is twofold. In addition to providing targeting function of the precursor to the organelle, these amino-terminal sequences act to prevent membrane-anchoring sequences located between residues 78 and 98 from stopping import at the outer mitochondrial membrane. These results are discussed in light of the function of distinct protein elements at the amino terminus of mitochondrially destined precursors in both organelle delivery and correct membrane localization.  相似文献   

4.
Three random translational -glucuronidase (gus) gene fusions were previously obtained in Arabidopsis thaliana, using Agrobacterium-mediated transfer of a gus coding sequence without promoter and ATG initiation site. These were analysed by IPCR amplification of the sequence upstream of gus and nucleotide sequence analysis. In one instance, the gus sequence was fused, in inverse orientation, to the nos promoter sequence of a truncated tandem T-DNA copy and translated from a spurious ATG in this sequence. In the second transgenic line, the gus gene was fused to A. thaliana DNA, 27 bp downstream an ATG. In this line, a large deletion occurred at the target site of the T-DNA. In the third line, gus is fused in frame to a plant DNA sequence after the eighth codon of an open reading frame encoding a protein of 619 amino acids. This protein has significant homology with animal and plant (receptor) serine/threonine protein kinases. The twelve subdomains essential for kinase activity are conserved. The presence of a potential signal peptide and a membrane-spanning domain suggests that it may be a receptor kinase. These data confirm that plant genes can be tagged as functional translational gene fusions.  相似文献   

5.
Copper delivery to the thylakoid lumen protein plastocyanin and the stromal enzyme Cu/Zn superoxide dismutase in chloroplasts is required for photosynthesis and oxidative stress protection. The copper delivery system in chloroplasts was characterized by analyzing the function of copper transporter genes in Arabidopsis thaliana. Two mutant alleles were identified of a previously uncharacterized gene, PAA2 (for P-type ATPase of Arabidopsis), which is required for efficient photosynthetic electron transport. PAA2 encodes a copper-transporting P-type ATPase with sequence similarity to PAA1, which functions in copper transport in chloroplasts. Both proteins localized to the chloroplast, as indicated by fusions to green fluorescent protein. The PAA1 fusions were found in the chloroplast periphery, whereas PAA2 fusions were localized in thylakoid membranes. The phenotypes of paa1 and paa2 mutants indicated that the two transporters have distinct functions: whereas both transporters are required for copper delivery to plastocyanin, copper delivery to the stroma is inhibited only in paa1 but not in paa2. The effects of paa1 and paa2 on superoxide dismutase isoform expression levels suggest that stromal copper levels regulate expression of the nuclear genes IRON SUPEROXIDE DISMUTASE1 and COPPER/ZINC SUPEROXIDE DISMUTASE2. A paa1 paa2 double mutant was seedling-lethal, underscoring the importance of copper to photosynthesis. We propose that PAA1 and PAA2 function sequentially in copper transport over the envelope and thylakoid membrane, respectively.  相似文献   

6.
7.
The nucleotide sequence of the recJ gene of Escherichia coli K-12 and two upstream coding regions was determined. Three regions were identified within these two upstream genes that exhibited weak to moderate promoter activity in fusions to the galK gene and are candidates for the recJ promoter. recJ appeared to be poorly translated: the recJ nucleotide sequence revealed a suboptimal initiation codon GUG, no discernible ribosome-binding consensus sequence, and relatively nonbiased synonymous codon usage. Comparison of the sequence of this region of the chromosome with DNA data bases identified the gene immediately downstream of recJ as prfB, which encodes translational release factor 2 and has been mapped near recJ at 62 min. No significant homology between recJ and other previously sequenced regions of DNA was detected. However, protein sequence comparisons with a gene upstream of recJ, denoted xprB, revealed significant homology with several site-specific recombination proteins. Its genetic function is presently unknown. Knowledge of the nucleotide sequence of recJ allowed the construction of a plasmid from which overexpression of RecJ protein could be induced. Supporting the notion that translation of recJ is limiting, a strong T7 bacteriophage promoter upstream of recJ did not, by itself, allow high-level expression of RecJ protein. The addition of a ribosome-binding sequence fused to the initiator GTG of recJ in this construction was necessary to promote expression of high levels of RecJ protein.  相似文献   

8.
Accurate computational prediction of protein functions increasingly relies on network-inspired models for the protein function transfer. This task can become challenging for proteins isolated in their own network or those with poor or uncharacterized neighborhoods. Here, we present a novel probabilistic chain-graph-based approach for predicting protein functions that builds on connecting networks of two (or more) different species by links of high interspecies sequence homology. In this way, proteins are able to "exchange" functional information with their neighbors-homologs from a different species. The knowledge of interspecies relationships, such as the sequence homology, can become crucial in cases of limited information from other sources of data, including the protein-protein interactions or cellular locations of proteins. We further enhance our model to account for the Gene Ontology dependencies by linking multiple but related functional ontology categories within and across multiple species. The resulting networks are of significantly higher complexity than most traditional protein network models. We comprehensively benchmark our method by applying it to two largest protein networks, the Yeast and the Fly. The joint Fly-Yeast network provides substantial improvements in precision, accuracy, and false positive rate over networks that consider either of the sources in isolation. At the same time, the new model retains the computational efficiency similar to that of the simpler networks.  相似文献   

9.
RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging.  相似文献   

10.
The membrane topology of the plasmid-encoded Pseudomonas aeruginosa ChrA protein, which effluxes chromate ions, was determined by the analysis of translational fusions with reporter enzymes alkaline phosphatase and beta-galactosidase. A novel 13-TMS (transmembrane segments) topology, with the N-terminus located in the cytoplasm and the C-terminus in the periplasmic space, was consistent with the enzyme activities determined in both Escherichia coli and P. aeruginosa. Alignment of the two halves of ChrA showed significant sequence homology, with TMS I, II, III, IV, V and VI displaying similarity to TMS VIII, IX, X, XI, XII and XIII, respectively, although with opposite membrane orientations. This suggests that ChrA arose from the duplication of a gene encoding a 6-TMS ancestral protein, followed by the insertion of extra TMS VII. These data also suggest that the two halves of ChrA may carry out distinct functions for the transport of chromate.  相似文献   

11.
Structural comparison reveals remote homology that often fails to be detected by sequence comparison. The DALI web server ( http://ekhidna2.biocenter.helsinki.fi/dali ) is a platform for structural analysis that provides database searches and interactive visualization, including structural alignments annotated with secondary structure, protein families and sequence logos, and 3D structure superimposition supported by color-coded sequence and structure conservation. Here, we are using DALI to mine the AlphaFold Database version 1, which increased the structural coverage of protein families by 20%. We found 100 remote homologous relationships hitherto unreported in the current reference database for protein domains, Pfam 35.0. In particular, we linked 35 domains of unknown function (DUFs) to the previously characterized families, generating a functional hypothesis that can be explored downstream in structural biology studies. Other findings include gene fusions, tandem duplications, and adjustments to domain boundaries. The evidence for homology can be browsed interactively through live examples on DALI's website.  相似文献   

12.

Background  

Inferences about protein function are often made based on sequence homology to other gene products of known activities. This approach is valuable for small families of conserved proteins but can be difficult to apply to large superfamilies of proteins with diverse function. In this study we looked at sequence homology between members of the DJ-1/ThiJ/PfpI superfamily, which includes a human protein of unclear function, DJ-1, associated with inherited Parkinson's disease.  相似文献   

13.
14.
Thirteen conditional lethal mutations in genes of Salmonella typhimurium map at the clmF locus and affect both viability and the faithful partitioning of daughter nucleoids. These mutations have now been divided into three complementation groups by using cloned fragments of S. typhimurium DNA and renamed parC, parE, and parF. The proteins produced from the cloned fragments predict that ParC is an 85-kD protein, ParE is 75 kD in size, and ParF, 27 kD. The parE gene is about 5 kb upstream of the parC gene, and parC is just upstream of parF. Genes situated between parC and parE produce at least two proteins of unknown function. The DNA sequence of the S. typhimurium parC gene was determined and has 56% homology with the first 1400 base pairs of the Escherichia coli gryA gene, which encodes the A subunit of DNA gyrase, and 85% homology with the E. coli parC gene. Despite the strong homology between gryA and parC, these two genes cannot substitute for one another. The DNA sequence of the S. typhimurium parF gene was determined and predicts a protein with a hydrophobic N terminus. The ParF protein may interact with ParC and ParE to anchor these proteins to the membrane. These results raise questions about the relative roles of gyrase and ParCEF in nucleoid decatenation. In addition, the parC and gyrA genes provide an example of the evolution of essential functions by gene duplication.  相似文献   

15.
霍乱毒素B亚基(CTB)是良好的免疫佐剂和载体蛋白。本研究通过定点突变,在CTB基因(ctxB)3′端终止密码前引入了限制性内切酶EcoRI,构建了质粒pMC05。pMC05中CTB与下游lacZ′基因阅读框架相同,转化大肠杆菌后能够表达CTB与β-半乳糖苷酶α肽的融合蛋白;所表达的融合蛋白能与GM1结合,说明融合蛋白保持CTB的基本高级结构和生物学活性;融合蛋白能与抗-CTB抗体结合,说明融合蛋白具有CTB的抗原性。以上结果表明:通过将外源抗原决定簇基因融合至ctxB的3′端,在大肠杆菌中表达融合蛋白,构建基因工程肽苗是可行的。还探索了转录终止序列对融合基因蛋白表达水平的影响,构建了高效表达融合蛋白的载体-宿主系统。  相似文献   

16.
Large granular lymphocyte (LGL) leukemia is a lymphoproliferative disorder often associated with autoimmune disease. A central feature of this disease is dysregulation of apoptosis. In order to identify differentially expressed genes in LGL leukemia, microarray analysis was performed. We found many differentially expressed genes including several expression sequence tags (ESTs). As a systematic study, we selected one up-regulated EST (GenBank Accession number N47089) and further investigated. An LGL leukemia library was screened using this EST as a probe and a full-length sequence for a novel gene was identified. The deduced amino acid sequence revealed that the novel gene encodes a G-protein-coupled receptor gene that exhibits 86% identity with rat sphingosine-1-phosphate receptor (edg-8/nrg-1). This gene is present in brain, spleen, and peripheral blood mononuclear cells (PBMC) and is overexpressed in leukemic LGL.  相似文献   

17.
Regulators of G-protein signalling (RGS) are a family of proteins that interact with G-proteins to regulate negatively G-protein coupled receptor (GPCR) signalling. In addition to a conserved core domain that is necessary and sufficient for their GTPase activating protein (GAP) like activity, RGSs possess N- and C-terminal motifs that confer distinct functional differences. In order to identify the role of the non-RGS region of human RGS1, we have characterized a series of fusions between RGS1 and GFP in a yeast mutant lacking the RGS containing SST2 gene. Using both halo assays as well as a GPCR responsive FUS1-LacZ reporter gene, we demonstrate that a RGS1-GFP fusion inhibits GPCR signalling in yeast while GFP fusions containing either the N-terminus non RGS sequence of RGS1(1-68) or the sequence containing the RGS box of RGS1(68-197) produce proteins that retain RGS1 activity. These results suggest that both the N-terminal and the RGS box of RGS1 function to inhibit signalling. Analysis of a series of mutants spanning the entire N-terminal non-RGS region of RGS1 produced by conservative segment exchange (CSE) mutagenesis showed little loss of function in yeast. This suggests that the overall structure of the N-terminal region of RGS1 rather than specific motifs or residues is required for its function.  相似文献   

18.
High-throughput proteomics technologies, especially the yeast two-hybrid system, produce large volumes of protein-protein interaction data organized in networks. The complete sequencing of many genomes raises questions about the extent to which such networks can be transferred between organisms. We attempted to answer this question using the experimentally derived Helicobacter pylori interaction map and the recently described interacting domain profile pair (IDPP) method to predict a virtual map for Escherichia coli. The extensive literature concerning E.coli was used to assess all predicted interactions and to validate the IDPP method, which clusters protein domains by sequence and connectivity similarities. The IDPP method has a much better heuristic value than methods solely based on protein homology. The IDPP method was further applied to Campylobacter jejuni to generate a virtual interaction map. An in-depth comparison of the chemotaxis pathways predicted in E.coli and C.jejuni led to the proposition of new functional assignments. Finally, the prediction of protein-protein interaction maps across organisms enabled us to validate some of the interactions on the original experimental map.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号