首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

2.
A practical spectrofluorimetric calibration method at room temperature is described for determining large chlorophyll a/b ratios on direct extracts from plant material of pigments in 80% aqueous acetone, dimethyl sulfoxide, and N,N-dimethylformamide. The method is based on the work of Boardman and Thorne [Boardman NK and Thorne SW (1971) Biochim Biophys Acta 253: 222–231] who used diethyl ether as solvent. We repeated the calibration in diethyl ether and find significantly different parameters for the calibration curve. The range of standards in this work included solutions with chlorophyll a/b ratios of 10–125 in dimethyl sulfoxide, and of 10–220 in the other solvents. Fluorescence emission spectra were found to be a highly sensitive method for assessing chlorophyll purity. We determined the limits of sensitivity for each solvent from the calibration data. The empirically determined slope of the calibration curve was shown to be related to intrinsic properties of the chlorophylls in solution; this allows predictions of the performance of the method in other solvents.  相似文献   

3.
Chlorophyll is a deleterious molecule that generates reactive oxygen species and must be converted to non‐toxic molecules during plant senescence. The degradation pathway of chlorophyll a has been determined; however, that of chlorophyll b is poorly understood, and multiple pathways of chlorophyll b degradation have been proposed. In this study, we found that chlorophyll b is degraded by a single pathway, and elucidated the importance of this pathway in avoiding cell death. In order to determine the chlorophyll degradation pathway, we first examined the substrate specificity of 7‐hydroxymethyl chlorophyll a reductase. 7‐hydroxymethyl chlorophyll a reductase reduces 7‐hydroxymethyl chlorophyll a but not 7‐hydroxymethyl pheophytin a or 7‐hydroxymethyl pheophorbide a. These results indicate that the first step of chlorophyll b degradation is its conversion to 7‐hydroxymethyl chlorophyll a by chlorophyll b reductase, although chlorophyll b reductase has broad substrate specificity. In vitro experiments showed that chlorophyll b reductase converted all of the chlorophyll b in the light‐harvesting chlorophyll a/b protein complex to 7‐hydroxymethyl chlorophyll a, but did not completely convert chlorophyll b in the core antenna complexes. When plants whose core antennae contained chlorophyll b were incubated in the dark, chlorophyll b was not properly degraded, and the accumulation of 7‐hydroxymethyl pheophorbide a and pheophorbide b resulted in cell death. This result indicates that chlorophyll b is not properly degraded when it exists in core antenna complexes. Based on these results, we discuss the importance of the proper degradation of chlorophyll b.  相似文献   

4.
Recent advances in chlorophyll biosynthesis and breakdown in higher plants   总被引:18,自引:0,他引:18  
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis, genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.  相似文献   

5.
The author gives an autobiographical sketch of his path to chlorophyll research, and describes some results. The discussion is largely focused on long wavelength forms of chlorophyll and how they might be generated by self-assembly. Dimers or oligomers, (Chl)n, result from coordination interactions between the central magnesium atom of one macrocycle and nucleophilic side chains of another i.e., keto C=OMg in the case of Chl a. Coordination interactions mediated by a water molecule coordinated to Mg in one macrocycle and to a nucleophilic group in another e.g., MgO(H)HO=C keto, form aggregates with very different structures and properties; where more than one strong nucleophile or hydrogen bonding group is present in the chlorophyll, e.g., the formyl group in Chl b, the acetyl group of Bchl a, or the hydroxyethyl group of Bchl c, they may also participate in direct coordination interactions with Mg as well as hydrogen bonding to water coordinated to Mg. The magnetic resonance properties of Chl a/water aggregates have provided the basis for the special pair concept for the primary electron donor in photosynthesis. Structural information derived from small angle neutron scattering studies on chlorophyll aggregates is now providing an experimental basis for comprehensive models that integrate antenna and photoreaction center chlorophyll functions.This article was written at the invitation of Govindjee. It has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.  相似文献   

6.
Chlorophyll a and chlorophyll b are interconverted in the chlorophyll cycle. The initial step in the conversion of chlorophyll b to chlorophyll a is catalyzed by the chlorophyll b reductases NON‐YELLOW COLORING 1 (NYC1) and NYC1‐like (NOL), which convert chlorophyll b to 7‐hydroxymethyl chlorophyll a. This step is also the first stage in the degradation of the light‐harvesting chlorophyll a/b protein complex (LHC). In this study, we examined the effect of chlorophyll b on the level of NYC1. NYC1 mRNA and NYC1 protein were in low abundance in green leaves, but their levels increased in response to dark‐induced senescence. When the level of chlorophyll b was enhanced by the introduction of a truncated chlorophyllide a oxygenase gene and the leaves were incubated in the dark, the amount of NYC1 was greatly increased compared with that of the wild type; however, the amount of NYC1 mRNA was the same as in the wild type. In contrast, NYC1 did not accumulate in the mutant without chlorophyll b, even though the NYC1 mRNA level was high after incubation in the dark. Quantification of the LHC protein showed no strong correlation between the levels of NYC1 and LHC proteins. However, the level of chlorophyll fluorescence of the dark adapted plant (Fo) was closely related to the accumulation of NYC1, suggesting that the NYC1 level is related to the energetically uncoupled LHC. These results and previous reports on the degradation of chlorophyllide a oxygenase suggest that the a feedforward and feedback network is included in chlorophyll cycle.  相似文献   

7.
衰老叶片中叶绿素的降解   总被引:6,自引:0,他引:6  
叶蕙  刘伟 《西北植物学报》2002,22(2):437-443
综述了近年来关于衰老叶片中叶绿素降解的研究情况,包括叶绿素代谢的中间产物、终产物、主要代谢途径、代谢酶及代谢途径在细胞内的定位及代谢调节方面的研究进展。  相似文献   

8.
The assignment is presented for the principal phosphorescence bands of protochlorophyll(ide), chlorophyllide and chlorophyll in etiolated and greening bean leaves measured at -196°C using a mechanical phosphoroscope. Protochlorophyll(ide) phosophorescence spectra in etiolated leaves consist of three bands with maxima at 870, 920 and 970 nm. Excitation spectra show that the 870 nm band belongs to the short wavelength protochlorophyll(ide), P627. The latter two bands correspond to the protochlorophyll(ide) forms, P637 and P650. The overall quantum yield for P650 phosphorescence in etiolated leaves is near to that in solutions of monomeric protochlorophyll, indicating a rather high efficiency of the protochlorophyll(ide) triplet state formation in frozen plant material. Short-term (2–20 min) illumination of etiolated leaves at the temperature range from -30 to 20°C leads to the appearance of new phosphorescence bands at about 990–1000 and 940 nm. Judging from excitation and emission spectra, the former band belongs to aggregated chlorophyllide, the latter one, to monomeric chlorophyll or chlorophyllide. This indicates that both monomeric and aggregated pigments are formed at this stage of leaf greening. After preillumination for 1 h at room temperature, chlorophyll phosphorescence predominates. The spectral maximum of this phosphorescence is at 955–960 nm, the lifetime is about 2 ms, and the maximum of the excitation spectrum lies at 668 nm. Further greening leads to a sharp drop of the chlorophyll phosphorescence intensity and to a shift of the phosphorescence maximum to 980 nm, while the phosphorescence lifetime and a maximum of the phosphorescence excitation spectrum remains unaltered. The data suggest that chlorophyll phosphorescence belongs to the short wavelength, newly synthesized chlorophyll, not bound to chloroplast carotenoids. Thus, the phosphorescence measurement can be efficiently used to study newly formed chlorophyll and its precursors in etiolated and greening leaves and to address various problems arising in the analysis of chlorophyll biosynthesis.Abbreviations Pchl protochlorophyll and protochlorophyllide - Chld chlorophyllide - Chl chlorophyll  相似文献   

9.
叶绿素含量是植物学和农业相关研究领域常用的生理指标.叶绿素含量和叶片光合功能密切相关,但是现有的叶绿素含量的测定方法无法实现叶绿素含量和光合功能的同步测定和关联分析.为解决该问题,本研究通过测定35个小麦品种旗叶的SPAD值和叶绿素荧光诱导动力学曲线,分别使用不同时间的快速叶绿素荧光动力学曲线的荧光值,以及33个常用荧...  相似文献   

10.
A comparative study of reciprocal conversions of chlorophylls a and b (Chl aand Chl b) in etiolated and post-etiolated rye seedlings (Secale cereale L.) was performed. The production of these pigments was initiated by infiltration of exogenous chlorophyllides a and b (Chlide a and b). It was shown that Chlide b, when infiltrated into etiolated rye seedlings, was esterified, producing Chl b. A major portion of Chl b (more than 80%) was transformed into Chl aduring long-term seedling dark exposure. The high rate of Chl b conversion into Chl a in the pool of pigments of exogenous origin was also observed during the lag-phase when there was no chlorophyll formation from endogenous precursors. The infiltration of Chlide a resulted in Chl a formation. The efficiency of its conversion into Chl b was low (about 1%) in the etiolated seedlings but increased during their greening. In the post-etiolated seedlings infiltrated with Chlide b, which were preliminary illuminated for 6–12 h, the Chl /Chl a ratio was almost similar in the pools of pigments synthesized from both exogenous and endogenous precursors. The rates of direct and reverse reactions responsible for the interconversion of Chl aand Chl b depended on the stage of the formation of the photosynthetic apparatus during greening of etiolated seedlings, when the particular structural components are formed in a definite sequence.  相似文献   

11.
茶多酚对盐胁迫下小麦幼苗叶片生理特性的影响   总被引:2,自引:0,他引:2  
以春小麦"陇春30号"为实验材料,主要研究了150 mmol/L NaCl和不同浓度(25 mg/L和100 mg/L)茶多酚(tea polyphenols, TP)单独或复合处理对小麦幼苗叶片叶绿素含量、叶绿素荧光参数及过氧化氢(H_2O_2)产生等生理特性的影响。结果表明:(1)150 mmol/L NaCl单独处理导致小麦幼苗叶片叶绿素含量及光适应下实际光量子产量[actual light quantum yield,Y(II)]、光化学淬灭(photochemical quenching, qP)、光合电子传递效率(photosynthetic electron transfer efficiency, ETR)均降低,非光化学淬灭(non-photochemical quenching, NPQ)增大;TP单独处理不影响这些指标。(2)盐胁迫诱导细胞壁过氧化物酶(cell wall-peroxidase, cw-POD)、二胺氧化酶(diamine oxidase, DAO)和多胺氧化酶(polyamine oxidase, PAO)活性显著增高;低浓度TP使cw-POD活性显著增大,而DAO和PAO活性无显著变化;不同的是,高浓度TP不影响cw-POD活性,却使DAO和PAO活性显著减小。(3)与NaCl单独处理相比,TP的添加导致NaCl处理下小麦幼苗叶片叶绿素含量增加,最大光化学效率(maximal photochemical efficiency,F_v/F_m)和ETR值增大,而NPQ值、H_2O_2含量及cw-POD、DAO和PAO三种酶活性均降低。总之,TP有效地缓解了盐胁迫诱导的小麦幼苗叶绿素含量的减少及对PS II光合电子传递效率和光化学反应速率的抑制,增强了植物的光合能力,与此同时降低了cw-POD、DAO和PAO活性,减少了H_2O_2的产生,从而缓解盐胁迫对小麦幼苗造成的伤害,提高小麦幼苗对盐环境的耐受性。  相似文献   

12.
Natural chlorins containing a residue of the nonesterified propionic acid in the pyrrole ring D were oxidized with 2,3-dichloro-5,6-dicyanobenzoquinone at C18 to yield exocyclic -lactones. The opening of the lactones in alkaline medium resulted in the corresponding 18-hydroxychlorins.  相似文献   

13.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

14.
Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage‐prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat‐sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light‐dependent, heat‐induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg‐1) but not wild‐type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light‐grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de‐esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg‐1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re‐esterifying the chlorophyllide a produced during chlorophyll turnover.  相似文献   

15.
Lines of winter hexaploid Triticale and their F1 and F2 hybrids differing in morphological structure, pigment contents, photosynthetic productivity, and grain crops were studied. F1 hybrids received by crossing of Triticale lines contrasting in pigment contents showed in some cases a heterosis effect for chlorophyll (Chl) content per unit leaf area. Variation analysis demonstrated a polygenic control of Triticale pigment contents, and different rate of increase in F2 generation. We found maternal type of heritability of Chl b content and Chl content in light-harvesting complex of photosystem 2.  相似文献   

16.
植物叶绿素缺失突变体在自然界中广泛存在,是研究叶绿素形成和叶绿体发育等代谢途径的良好材料.该文主要从分子层面上阐述了叶绿素缺失突变体产生的原因,如叶绿素合成受阻、叶绿体光合蛋白合成或输入受阻、叶绿体RNA转录物未被编辑、过量光损伤和卟啉循环各物质之间的相互抑制,并归纳了近年来鉴定出来的一些叶绿素缺失突变基因,简要介绍了叶绿素和叶绿体之间的关系以及叶绿素缺失突变体的应用.  相似文献   

17.
叶绿素计SPAD-502在林业上应用   总被引:35,自引:0,他引:35  
叶绿素是植物光合作用的色素,传统方法测定叶绿素一般采用分光光度法.本研究采用便携式叶绿素计SPAD-502测定落叶松人工林下4个主要阔叶树种绿色度(SPAD值)的季节变化,并与分光光度法测定的叶绿素含量进行相关性分析.结果表明,SPAD值与叶绿素含量具有显著的相关性,SPAD值能较好地反映树木叶绿素含量的变化.因此,使用叶绿素计测定树木的叶绿素含量是完全可行的,在一定条件下可代替叶绿素含量的直接测定.由于叶绿素计SPAD-502携带方便、测定简便、迅速,且不损坏叶片,应在林业研究中积极推广使用.  相似文献   

18.
硫对成熟期烤烟叶绿素荧光参数的影响   总被引:1,自引:0,他引:1  
朱英华  屠乃美  肖汉乾  张国 《生态学报》2011,31(13):3796-3801
通通过液培试验,研究了硫浓度(0.01-32 mmol/L)对成熟期烤烟叶片叶绿素含量和叶绿素荧光参数的影响。结果表明,成熟期烤烟叶绿素a和叶绿素b含量随硫浓度的升高而逐渐增加,但各处理差异未达到显著水平。在2-32 mmol/L处理之间,烤烟叶片的有效量子产量(EQY)、最大量子产量(Fv/Fm)、光合电子传递速率(ETR)随硫浓度增加而降低,非光化学猝灭(NPQ)、非光化学过程中的基本量子产量(Fo/Fm)、PSⅡ水裂解端失活程度(Fo/Fv)和PSⅡ反应中心关闭程度(1-qP)随硫浓度增加而升高,2 mmol/L处理的质体醌库(Fv/2)低于4 mmol/L处理外,但其它处理的均随硫浓度升高而降低。0.01 mmol/L处理烤烟叶片的EQY、Fv/Fm和ETR低于2-8 mmol/L处理,但高于16 mmol/L和32 mmol/L处理,其NPQ、Fo/Fm、Fo/Fv和1-qP变化趋势则与之相反;0.01 mmol/L处理的Fv/2低于4 mmol/L处理的,但高于2 mmol/L及8-32 mmol/L处理;低硫处理烤烟EQY、Fv/Fm和ETR的降低可能不是由Fv/2引起的,而是由于1-qP升高引起的。但16 mmol/L和32 mmol/L处理Fv/Fm 、ETR、EQY降低可能是1-qP与 Fv/2共同作用的结果。  相似文献   

19.
Chlorophylls a-1 and b′, which are breakdown products of chlorophylls a and b respectively, were found in senescing leaves of Phaseolus vulgaris and Hordeum vulgare following excision from the plant. Chlorophyll a-1 was not detected in healthy plants, in senescing attached leaves or in chlorophyll-proteins isolated from senescent tissue. Chlorophyll a-1 formation in excised leaves increased with time for up to 10 days as chlorophyll a levels fell.  相似文献   

20.
张恒彬  吴娇娇  余春娅  赵鑫  江洪  李晓娜 《生态学报》2023,43(10):3882-3893
叶绿素含量和叶绿素荧光参数可以反映叶绿体状态及光合作用效率,可用于探讨植物对环境的适应能力和响应机制。选择贵州省毕节市撒拉溪石漠化治理示范区,研究了区内28个不同等级石漠化(无、潜在、轻度、中度、重度石漠化)样地中所采集的168份石生苔藓植物标本,探讨了其相对叶绿素含量(SPAD值)和叶绿素荧光参数对不同喀斯特石漠化生境的响应。结果表明:(1)石生苔藓SPAD值、叶绿素荧光参数受多种环境因子的综合影响,其中石漠化等级、大气温度、郁闭度、坡向的影响较为显著。(2)相较于低等级石漠化和阴坡生境,中高等级石漠化和阳坡的石生苔藓SPAD值和除非光化学淬灭系数(NPQ)和非调节性能量耗散(ФNO)之外的叶绿素荧光参数均降低,可能由于在石漠化生态系统逆向演替后期,石生苔藓植物的叶绿素含量降低,PSⅡ反应中心活性受到影响,PSⅡ电子传递受阻,植物体通过增加热耗散和启动非调节性机制进行自我保护。(3)3种优势石生苔藓植物中,穗枝赤齿藓(Erythrodontium julaceum)的SPAD值显著低于圆枝粗枝藓(Gollania tereticaulis)和密毛细羽藓(Cyrt...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号