首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of low doses of γ radiation (from 0.04 to 1.8 mGy) on the stability of human red blood cells (RBC) from healthy donors and diabetic patients using absorption spectroscopy. Because of the alteration of many enzymatic pathways in diabetic RBCs resulting in strong modification of the lipid and protein membrane components one could expect that the ionizing γ-radiation should influence the stability of the healthy and diabetic cells in a different way. Indeed, distinct discontinuities and monotonic changes of hemolysis detected in the healthy and diabetic RBCs suggest that various enzymatic and chemical processes are activated in these membranes by γ radiation. M?ssbauer measurements showed that only the highest applied dose of γ radiation caused modification of hemoglobin in both types of RBCs.  相似文献   

2.
The effects of pH on the membrane fluidity of intact human erythrocytes, ghosts, and their lipid vesicles were studied by spin label techniques in the range of pH 3.0 to 9.1. Two fatty acid spin labels, 5-nitroxide stearic acid (5NS) and 12-nitroxide stearic acid (12NS), and a maleimide spin label were used for the labeling of the membrane lipids and proteins, respectively. The outer hyperfine splitting (T parallel) was measured as a parameter of membrane fluidity. In the case of 5NS, the T parallel values for intact erythrocytes and ghosts remained almost constant over the entire pH range at 22 degrees C but those for their lipid vesicles changed slightly, indicating the vertical displacement of the labels in lipid bilayers. On the other hand, the ESR spectra of 12NS incorporated into intact erythrocytes and ghosts, as compared with their lipid vesicles, showed marked pH dependence. By means of spin labeling of membrane proteins, the conformational changes of the proteins were observed in the pH range mentioned above. These results suggest a possible association between the strong pH dependence of the T parallel values and the conformation changes of membrane proteins. The pH dependence of the membrane fluidity was also investigated in cholesterol-enriched and -depleted erythrocytes. The effects of cholesterol demonstrated that the membrane fluidity was significantly mediated by cholesterol at low pH, but not at high pH.  相似文献   

3.
We studied the effects of essential oils from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Balb/c mice. We found that in vivo essential oils were efficient bioantioxidants when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All studied essential oils inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increasing membrane resistance to spontaneous hemolysis, decreasing membrane microviscosity, maintenance of their integrity, and functional activity. The essential oil significantly decreased the LPO intensity in the liver and the brain of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.  相似文献   

4.
Summary Three strains ofSaccharomyces cerevisiae with different capacities for repair of radiation damage (RAD, rad18, and rad52) have been tested for their colony forming ability (CFA) and growth rates after application of small X-ray doses from 3.8 mGy to 40 Gy. There was no reproducible increase in CFA observable after application of doses between 3.8 mGy and 4.7 Gy. X-ray doses of 40 Gy causing an inactivation of CFA from 90% to 50%, depending on the repair capacity of the strains used, caused a reduced increase in optical density during 2 h buffer treatment in comparison to unirradiated cells. This reduction however, is reversible as soon as the cells are transferred into nutrient medium. One hour after transfer into growth medium the portions of cells with large buds (G2 and M phase) and cells with small buds (S phase) are drastically different in irradiated cells from those obtained in unirradiated cells. The time necessary for separation of mother and daughter cells is prolonged by X-ray irradiation and the formation of new buds is retarded.  相似文献   

5.
Amphiphilic compounds such as long-chain acyl carnitines accumulate in ischemic myocardium and potentially contribute to the myocardial damage. To characterize alterations in membrane molecular dynamics produced by palmitoylcarnitine, human erythrocytes were spin-labeled with 5-doxylstearic acid, and membrane fluidity was quantified by measuring the changes in the order parameter derived from ESR spectra. Palmitoylcarnitine induced triphasic alterations in membrane fluidity of human erythrocytes. The membrane fluidity increased for 5 min, then decreased in a concentration-dependent manner. At higher concentrations (100 and 150 microM) of palmitoylcarnitine, membrane fluidity increased again after 30 and 20 min of the incubation, respectively. Addition of 2.8 mM CaCl2 resulted in a significant decrease in membrane fluidity and enhanced the alterations in membrane fluidity caused by palmitoylcarnitine. The results suggest that alterations in molecular dynamics are one mechanism through which long-chain acyl carnitine could play an important role in ischemic injury.  相似文献   

6.
Amphiphilic compounds such as long-chain acyl carnitine accumulate in ischemic myocardium and potentially contribute to the myocardial damage, and the role of carnitine in protecting the heart against ischemic damage is interesting. It has been reported that palmitoylcarnitine causes alterations in the membrane molecular dynamics, so this study was designed to investigate whether L-carnitine had a stabilizing effect of membrane fluidity using the spin-label technique. Human erythrocytes were spin-labeled with 5-doxylstearic acids, and membrane fluidity was quantified by measuring the change in the order parameter S. The administration of palmitoylcarnitine (100 microM) altered the membrane fluidity of erythrocytes and caused significant morphological changes. L-carnitine (2mM) decreased the alteration of the fluidity of erythrocytes incubated with palmitoylcarnitine (100 microM), and improved the morphological changes in erythrocytes. These results show that L-carnitine has a stabilizing effect of membrane fluidity as a result of interaction with the palmitoylcarnitine which has a detergent effect.  相似文献   

7.
Amphiphilic compounds such as long-chain acyl carnitines accumulate in ischemic myocardium and potentially contribute to the myocardial damage. To characterize alterations in membrane molecular dynamics produced by palmitoylcarnitine, human erythrocytes were spin-labeled with 5-doxylstearic acid, and membrane fluidity was quantified by measuring the changes in the order parameter derived from ESR spectra. Palmitoylcarnitine induced triphasic alterations in membrane fluidity of human erythrocytes. The membrane fluidity increased for 5 min, then decreased in a concentration-dependent manner. At higher concentrations (100 and 150 μM) of palmitoylcarnitine, membrane fluidity increased again after 30 and 20 min of the incubation, respectively. Addition of 2.8 mM CaCl2 resulted in a significant decrease in membrane fluidity and enhanced the alterations in membrane fluidity caused by palmitoylcarnitine. The results suggest that alterations in molecular dynamics are one mechanism through which long-chain acyl carnitine could play an important role in ischemic injury.  相似文献   

8.
Abtract Raman spectra were used to study the effects of the phosphorylated amino acids on the erythrocyte membrane. It was found that some phosphorylated amino acids might cause the polar part of the membrane phospholipid to become less ordered, the packing of the chains to become looser, and the end of the chain more ordered. Some of the phosphoamino acids cause the phospholipids' all-trans/gauche ratio to increase and some cause them to decrease. This could give some clues to the function of phosphorylated proteins in the biological process concerning the change in membrane mobility.  相似文献   

9.
The effects of several membrane-acting drugs on malaria and sickle cell anemia was studied. In the initial experiments, propranolol and W-7 were shown to increase red cell density.In vitro, these drugs inhibited the growth ofP. falciparum. However,in vivo experiments using the murine malarial parasite,P. vinckei, demonstrated little, if any, anti-parasite activity with the doses of drugs employed. Subsequently, prostaglandin oligomeric derivatives were found to inhibit the growth ofP. falciparum in vitro andP. vinckei in vivo. Since prostaglandin oligomers inhibited the formation of dense, dehydrated cells (irreversible sickle cells), they may also have therapeutic efficacy in sickle cell anemia.  相似文献   

10.
1. 1. Anesthetic alcohols (pentanol, hexanol and heptanol) were found to increase the fluidity of red cell membrane lipids as monitored by the fluorescence depolarization of diphenylhexatriene. The relative potency of the alcohols was found to be parallel to their relative membrane/water partition coefficients.
2. 2. Hexanol had biphasic effect on erythritol uptake by simple diffusion by red cells. At concentrations less than 9 mM, hexanol had no significant effect. At concentrations greater than 9 mM, there was an approximately linear increase in erythritol permeability with increasing alcohol concentration.
3. 3. The facilitated transport of uridine was markedly inhibited by hexanol. Hexanol at 6 mM produced a 65% inhibition of uridine (4 mM) uptake. Hexanol decreased both the apparent Km and V values for the equilibrium exchange of uridine.
4. 4. The facilitated transport of galactose was only slightly inhibited by hexanol.
5. 5. Hexanol was without effect on the passive and active fluxes of Na+ and K+ in red cells with altered cation contents. Cells that were slightly depleted of K+ and cells that were highly K+-depleted were both insensitive to hexanol.
Keywords: Anesthetic alcohol; Transport; (Human erythrocyte membrane)  相似文献   

11.
12.
13.
Effects of acute exercise on insulin binding to erythrocytes in normal men   总被引:1,自引:0,他引:1  
Ten normal men were subjected to acute mild and moderate exercise tests, and the insulin binding to erythrocytes was determined before and immediately after exercise and also 10, 30 and 60 minutes after exercise in each test. The insulin binding significantly increased immediately after acute moderate exercise and did not increase immediately after acute mild exercise. In contrast, it decreased below the basal level at 30 and 60 minutes in each test. The changes in insulin receptor binding were due mainly to an alteration in insulin receptor affinity rather than a change in receptor number. These results suggest that isolated erythrocytes may be of some value for study of the effect of physical exercise on the insulin receptor.  相似文献   

14.
Effects of carbohydrates on membrane stability at low water activities   总被引:19,自引:0,他引:19  
The relative effectiveness of a variety of carbohydrates in preserving the structural and functional integrity of membranes at low water activities was studied, using Ca-transporting microsomes from muscle as a model membrane. The order of effectiveness (greatest to lowest) was: trehalose, lactose, maltose, cellobiose, sucrose, glucose, fructose, sorbitol, raffinose, myo-inositol, glycerol. At the highest concentrations of the most effective sugars tested, microsomes were obtained upon rehydration that were similar structurally and functionally to fresh membranes. The least effective carbohydrates, alcohol sugars, all appear to be fusogenic. A structural explanation for relative effectiveness of the sugars was sought, but no clear relationship was found, except that effectiveness does not appear to be related to the number of position of hydroxyl groups available for hydrogen bonding.  相似文献   

15.
Plasmodium, the parasite which causes malaria in humans multiplies in the liver and then infects circulating erythrocytes. Thus, the role of the erythrocyte cell membrane in antimalarial drug activity and resistance has key importance. The effects of the antiplasmodial N(6)-(4-methoxybenzyl)quinazoline-2,4,6-triamine (M4), and its inclusion complex (M4/HPβCD) with 2-hydroxypropyl-β-cyclodextrin (HPβCD) on human erythrocytes and on cell membrane molecular models are herein reported. This work evidences that M4/HPβCD interacts with red cells as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a 10μM concentration; b) in isolated unsealed human erythrocyte membranes (IUM) a concentration as low as 1μM induced sharp DPH fluorescence anisotropy decrease whereas increasing concentrations produced a monotonically decrease of DPH fluorescence lifetime at 37°C; c) X-ray diffraction studies showed that 200μM induced a complete structural perturbation of dimyristoylphosphatidylcholine (DMPC) bilayers whereas no significant effects were detected in dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of lipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively; d) fluorescence spectroscopy data showed that increasing concentrations of the complex interacted with the deep hydrophobic core of DMPC large unilamellar vesicles (LUV) at 18°C. All these experiments are consistent with the insertion of M4/HPβCD in the outer monolayer of the human erythrocyte membrane; thus, it can be considered a promising and novel antimalarial agent.  相似文献   

16.
17.
Abstract

I investigated whether long term low dose exposure to acrylamide increased micronucleus frequency in rat bone marrow polychromatic erythrocytes (PCEs). Twenty-five male and 25 female Wistar rats were used. Animals of each sex were segregated into two treatment groups and one control group. Each treatment group consisted of ten animals and each control group consisted of five animals. Acrylamide, 2 or 5 mg/kg/day, was administered to the treatment groups in their drinking water for 90 days. Twenty-four hours after the last treatment, bone marrow samples were obtained and analyzed for the frequency of micronucleated polychromatic erythrocytes (MNPCEs). The cytotoxic effect of acrylamide on bone marrow also was tested by assessing the polychromatic erythrocyte/normochromatic erythrocyte (PCE/NCE) ratio. Both doses of acrylamide significantly increased the frequency of MNPCEs in both male and female rats. Acrylamide also decreased the PCE/NCE ratio in both sexes compared to the control group. My study showed that chronic low dose exposure to acrylamide increased the formation of micronuclei in PCEs of male and female rat bone marrow.  相似文献   

18.
Effects of the selective D2 receptors antagonist clebopride on behavior of adult male rats was studied in such tests as sucrose consumption, open field, elevated plus maze, and complex maze with food reinforcement. The drug was injected in small doses (0.2 and 0.4 mg/kg) chronically within two weeks. It was shown that clebopride may have an influence on emotional and motivational state of experimental animals, on the one hand, causing depressive-like changes, and on the other hand, improving learning ability and exploratory reactions. A variety of consequences of D2 antagonist action is caused, apparently, by a competition of its post- and presynaptic effects.  相似文献   

19.
20.
The effects of the vitamin A lysosomal membrane labilizator on electrophysiological characteristics was investigated on frog cardiomyocytes. Large and small doses of vitamin A produced qualitatively identical effects: decrease of the steepness of action potential (AP) front, decrease of the spike amplitude, shortening of the plateau, decrease of the steepness in the last phase of AP-repolarization. The AP-duration decreased considerably. Large doses of the vitamin also reduced the rest potential level and insignificantly increased the heart contractions frequency. We assume that vitamin A can affect the cardiomyocyte surface membrane permeability, thereby decreasing its excitability due to suppression of the sodium and potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号