首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of histochemical methods, folic acid, dihydrofolate reductase and NADH2-cytochrome-C-reductase were studied in the bovine superior cervical ganglion, in parallel with quantitative estimations of dihydrofolate reductase activity and in connection with the process of ageing. Various levels of folate metabolism were present in nerve cells and glial cells, as well as in pre or postganglionic nerves. In the process of ageing the activity of dihydrofolate reductase gradually decreased and the folic acid concentration in the nerve cells increased. Thus the enzyme --- substrate ratio appeared to favour the enzyme in young animals but the substrate in old animals.  相似文献   

2.
This report describes a simple method to measure the activity of dihydrofolate reductase using the substrate [3H]dihydrofolate, which is generated by preincubation of [3H]folic acid for 10 min with dithionite before the enzymatic reaction. The procedure then measures the direct reduction of [3H]dihydrofolate to [3H]tetrahydrofolate by coprecipitating the unreduced substrate with excess unlabeled folic acid and acidified zinc sulfate. The advantage of this method is that [3H]dihydrofolate, which is not commercially available, can be generated from high specific activity [3H]folic acid, which is commercially available, immediately before initiating the enzymatic reaction. By this modification, the two important advantages of radioenzymatic assays for dihydrofolate reductase can be more easily exploited; namely, increased sensitivity because much less substrate need be used, and the ability to measure enzyme activity in crude tissue preparations without interference by precipitating proteins or nucleotide oxidases.  相似文献   

3.
Several plasmids mediating resistance to folic acid analogs were studied. The plasmids were in part newly isolated from clinical material and in part R factors studied earlier, such as R483, R721, R751, and R388. By gel chromatography, plasmid-carrying bacterial strains were all found to produce drug-resistant dihydrofolate reductases of a molecular weight distinctly larger than that of the chromosomal enzyme of the host. By gel electrophoresis and zymographic detection technique, analog inhibition characteristics, heat sensitivity, and pH optimum curves, the dihydrofolate reductases induced by R483, R751, and R388, respectively, could be clearly discerned as separate enzymes. Of the newly isolated plasmids all but one coded for a dihydrofolate reductase similar to that of R483. The aberrant one seemed to yield a new enzyme variant as judged from its drug inhibition characteristics and its pH optimum profile. Large differences in drug insensitivity were observed, thus the R751 and R388 enzymes were virtually insensitive to folic acid analogs, whereas the corresponding enzymes from the newly isolated plasmids, and from R483 showed a substantially higher sensitivity. On the other hand these latter enzymes were overproduced, in that the plasmid-carrying bacteria showed a 10- to 20-fold higher content of dihydrofolate reductase than the plasmid-free host strain. Among newly isolated trimethoprim-resistant strains, one was found which overproduced dihydrofolate reductase about 200-fold. In this case the enzyme was only slightly more resistant to folic acid analogs than the chromosomal Escherichia coli K-12 enzyme, and did not seem to be plasmid borne.  相似文献   

4.
Important histochemical observations on the nervous system, obtained in the last years, showed characteristic changes in folic acid and in its main enzyme--dihydrofolate reductase--in the old nerve cells. In neurons, the enzymic activity gradually decreased and folic acid accumulated in ageing. Glial cells preserved or slightly increased the same folate enzyme, but folic acid markedly increased in senescence. Opinions and suggestions bound to these observations are presented.  相似文献   

5.
The rôle of folic acid in wing formation was studied using amino-pterin—a folic acid antagonist. The effects of this antivitamin are acute: larviposition ceases in adults and wing formation is depressed in developing larvae. At lower concentrations graded responses are obtained. Omission of methionine and histidine had no effect on wing formation but thymidine did ameliorate the depression of wing formation by aminopterin.Aminopterin is known to inhibit dihydrofolate reductase—thereby inhibiting tetrahydrofolate production. Tetrahydrofolate is known to be involved in thymidine biosynthesis. The activity of dihydrofolate reductase in presumptive alates was 42 per cent higher than in larvae destined to develop as apterates. The significance of folic acid metabolism in wing formation is discussed.  相似文献   

6.
7.
Affinity chromatography of dihydrofolate reductase   总被引:10,自引:5,他引:5       下载免费PDF全文
1. Dihydrofolate reductase was purified from Lactobacillus casei MTX/R, and studied on affinity columns containing folic acid and methotrexate. Two forms of the enzyme were interconverted by incubation with substrates. 2. Affinity columns were prepared from agarose activated with cyanogen bromide and coupled with 1,6-diaminohexane. Stable folate derivatives were covalently attached by using a carbodi-imide condensation. 3. Columns containing folic acid retarded but did not retain the enzyme. 4. Methotrexate at pH 6.0 was particularly effective for retention of the enzyme. 5. There is selective loss of one form of the enzyme during affinity chromatography in the absence of added NADPH. This loss is due to conversion into a single enzyme form on the column. 6. NADPH has a dual effect in stabilizing the enzyme and in sensitizing it to inactivation by methotrexate, particularly in the presence of glycine. 7. Protein with affinity for methotrexate, but without dihydrofolate reductase activity, may also be eluted from the columns. 8. In a single-step procedure the enzyme was purified nearly 4000-fold from mammalian skin.  相似文献   

8.
A strain of Streptococcus faecium (ATCC 8043) which is highly resistant to the antifolic acid compound, amethopterin, was gently ruptured by exposing protoplasts of the organism to a hypotonic solution. The crude lysate resulting there-from was treated by various chemical and physical techniques designed to separate folic acid reductase from dihydrofolic acid reductase. In the process, the enzyme was purified approximately 160-fold; however, throughout the process, the enzyme preparation maintained the ability to reduce folic acid to tetrahydrofolic acid. Attempts to isolate mutants showing a deficiency in either folic acid reductase or dihydrofolic acid reductase were unsuccessful. Based on these results, it is concluded that folic acid is reduced to tetrahydrofolic acid by one enzyme in S. faecium (ATCC 8043). The crude lysate was also subjected to ultracentrifugation. An analysis of the supernatant fluid and the sediment indicated that the reductive activity is located in the soluble fraction of the cell.  相似文献   

9.
PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10–7 M, to 1×10–4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10–4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.  相似文献   

10.
The use of alternative substrates by dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) was investigated as a possible mechanism for the resistance of Lactobacillus casei to the cytotoxic drug methotrexate. The reduction of folic acid and 10-formylfolic acid by homogeneous enzyme was compared to that of the normal substrate, dihydrofolic acid. The three substrates have different pH optima and Km values. In addition, it was found that the reduction of 10-formylfolic acid was markedly stimulated by the presence of ions. Although the reduction was sensitive to methotrexate in all cases, the ion activation may be of importance in partially inhibited systems.  相似文献   

11.
We have studied the discrepancy in the degree of methotrexate (MTX) resistance that exists between two clonal cell lines, mouse 3T6 R50 cells and Chinese hamster ovary B11 0.5 cells that overexpress comparable levels of dihydrofolate reductase, yet exhibit a 100-fold difference in MTX resistance while maintaining similar sensitivity to the lipophilic antifolates trimetrexate and piritrexim. These data suggested that R50 cells may possess additional mechanism(s) of antifolate resistance, such as MTX transport alteration. Flow cytometric analysis using fluorescein methotrexate revealed comparable levels of fluorescein MTX displacement with lipophilic antifolates in viable R50 and B11 0.5 cells, but marked insensitivity of R50 cells to MTX competition, thus suggesting a poor uptake of MTX into R50 cells. Analysis of the kinetic parameters of dihydrofolate reductase from R50 cells neither showed alterations in enzyme affinities for various antifolates nor in the Michaelis constant for folic acid and NADPH nor a change in the pH activity optimum. R50 cell-free extracts contained wild-type levels of folylpoly-gamma-glutamyl synthetase activity. However, following metabolic labeling with [3H]MTX, no MTX polyglutamates could be detected in R50 cells. We conclude that the high level of MTX resistance in R50 cells is multifactorial, including overexpression of dihydrofolate reductase, reduced MTX transport, and possibly altered formation of MTX polyglutamates. The potential interactions between the different modalities of MTX resistance in R50 cells are being discussed.  相似文献   

12.
Purification and properties of Escherichia coli dihydrofolate reductase.   总被引:5,自引:0,他引:5  
Dihydrofolate reductase has been purified 40-fold to apparent homogeneity from a trimethoprim-resistant strain of Escherichia coli (RT 500) using a procedure that includes methotrexate affinity column chromatography. Determinations of the molecular weight of the enzyme based on its amino acid composition, sedimentation velocity, and sodium dodecyl sulfate gel electrophoresis gave values of 17680, 17470 and 18300, respectively. An aggregated form of the enzyme with a low specific activity can be separated from the monomer by gel filtration; treatment of the aggregate with mercaptoethanol or dithiothreitol results in an increase in enzymic activity and a regeneration of the monomer. Also, multiple molecular forms of the monomer have been detected by polyacrylamide gel electrophoresis. The unresolved enzyme exhibits two pH optima (pH 4.5 and pH 7.0) with dihydrofolate as a substrate. Highest activities are observed in buffers containing large organic cations. In 100 mM imidazolium chloride (pH 7), the specific activity is 47 mumol of dihydrofolate reduced per min per mg at 30 degrees. Folic acid also serves as a substrate with a single pH optimum of pH 4.5. At this pH the Km for folate is 16 muM, and the Vmax is 1/1000 of the rate observed with dihydrofolate as the substrate. Monovalent cations (Na+, K+, Rb+, and Cs+) inhibit dihydrofolate reductase; at a given ionic strength the degree of inhibition is a function of the ionic radius of the cation. Divalent cations are more potent inhibitors; the I50 of BaCl2 is 250 muM, as compared to 125 mM for KCl. Anions neither inhibit nor activate the enzyme.  相似文献   

13.
Thymidine kinase and dihydrofolate reductase mRNA levels and enzyme activities were determined in two temperature-sensitive cell lines, tsAF8 and ts13, that growth arrest in the G1 phase of the cell cycle at the restrictive temperature. The levels of thymidine kinase mRNA and enzyme activity increased markedly in both cell lines serum stimulated from quiescence at the permissive temperature. At the nonpermissive temperature, the levels of thymidine kinase mRNA and enzyme activity remain at the low levels of quiescent G0 cells. The levels of dihydrofolate reductase mRNA as well as the enzyme activity also increase when both cell lines are serum stimulated at the permissive temperature. When ts13 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity declines rapidly and dihydrofolate reductase mRNA is below detectable levels. On the contrary, when tsAF8 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity increases and mRNA levels are detectable slightly above G0 levels, even though the cells are blocked in the G1 phase. Studies with 2 other cDNA clones (one with an insert whose expression is cell cycle dependent and the other with an insert whose expression is not cell cycle dependent) indicate that the results are not due to aspecific toxicity or the effect of temperature. We conclude that the expression of different genes is affected differently by the ts block in G1, even when these genes are all growth-related.  相似文献   

14.
A macromolecular binder of folic acid and folic acid derivatives has been identified in the particulate fraction of homogenates of rabbit choroid plexus. Within the choroid plexus, there are 2.3 nmol of folate-binding activity (binder) per g of tissue. The molecular weight of the folate binder complex, separated from the particulate fraction after solubilization with Triton X-100, was 340,000 to 400,000 by Sephadex gel filtration. The partially purified binder, when freed of endogenous folates, bound equivalent amounts of both [3H]folic acid and [methyl-14C]methyltetrahydrofolic acid per mg of protein. Folic acid, homofolic acid, 5-methyltetrahydrofolic acid, and to a lesser degree, methotrexate, inhibited the binding of both [3H]folic acid and [14C]methyltetrahydrofolic acid. Binding activity, which decreased below pH = 7.0, was unaffected by pretreatment with ribonuclease but was eliminated completely by papain and a protease (Streptomyces griseus). Although dihydrofolate reductase was present in choroid plexus, the binder was distinct from dihydrofolate reductase as judged by gel filtration and methotrexate sensitivity. This high affinity binder of folates may be responsible, in part, for the rapid, saturable uptake of folic acid and methyltetrahydrofolic acid by rabbit choroid plexus in vitro.  相似文献   

15.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

16.
Abstract

Two procedures have been developed for the synthesis and isolation of 5,10-methylenetetrahydrofolate, the cofactor for the reaction catalyzed by thymidylate synthesize, one of which can be used for large-scale preparations of the cofactor and the other for small-scale syntheses especially suitable for obtaining the radio labeled cofactor. The large-scale procedure involves treatment of folic acid with dithionite to give dihydrofolate, which is then converted to tetrahydrofolate by dihydrofolate reductase (L. casei). The small-scale method involves a direct enzymatic reduction of folic acid to tetrahydrofolate by dihydrofolate reductase, and has been used to prepare the double-labeled 5,10-[14C]methylene[3′,5′,7,9-3H]tetrahydrofolate. In both procedures, after the reduction steps have been performed, the tetrahydrofolate is treated in situ with formaldehyde prior to purification by DEAE-cellulose chromatography, thus allowing the isolation of 5,10-methylenetetrahydrofolate as a dry powder after lyophilization. This product is active in the enzyme reaction without the further addition of excess formaldehyde as in previous procedures. The cofactor prepared in this manner has much improved stability toward oxidation compared to free tetrahydrofolate.  相似文献   

17.
R-Plasmids from a number of trimethoprim-resistant Escherichia coli and Citrobacter sp. were studied after transfer to E. coli K12 hosts. Each was found to specify a dihydrofolate reductase which was resistant to trimethoprim and Methotrexate, and which could be completely separated from the host chromosomal enzyme by gel filtration. Two distinct types of R-plasmid dihydrofolate reductases were identified. Type I enzymes, typified by the R483 enzyme previously described (Sk?ld, O., and Widh, A. (1974) J. Biol. Chem. 249, 4324-4325), are synthesized in amounts severalfold higher than the chromosomal enzyme. The 50% inhibitory concentrations (I50) of trimethoprim, Methotrexate, and aminopterin are increased several thousandfold over the corresponding values for the chromosomal enzyme. Type II R-plasmid dihydrofolate reductases are synthesized in about the same amount, or less, as the chromosomal enzyme, but are practically several hundredfold higher than those for the type I enzymes. Both types of R-plasmid dihydrofolate reductase showed little difference from the chromosomal enzyme in the binding of dihydrofolate, NADPH, folic acid, and 2,4-diaminopyrimidine.  相似文献   

18.
Methotrexate accumulation, subcellular distribution, metabolism, and cytotoxicity were studied in human epidermoid carcinoma (KB) cells that were exposed to a low extracellular concentration of methotrexate (25 nM) following culture in widely differing concentrations of folic acid. KB cells cultured in standard medium with a high folic acid concentration (2.3 microM) had high levels of cellular folate (21.4 pmol/10(6) cells). Five passages through low folate (2.7 nM) medium reduced the level of cellular folate to near physiologic levels (0.4-1.0 pmol/10(6) cells). In contrast to KB cells cultured in standard medium, in KB cells cultured in low folate medium, 1) methotrexate inhibited growth; 2) methotrexate uptake was markedly increased; 3) methotrexate polyglutamation was almost complete; 4) methotrexate binding to dihydrofolate reductase was markedly enhanced; and 5) significant methotrexate binding to a previously undescribed membrane-associated protein occurred. The amount of methotrexate bound to the membrane-associated protein from KB cells cultured in low folate medium equaled the quantities bound by dihydrofolate reductase. Further characterization of this membrane-associated protein indicated that it was soluble in solutions containing Triton X-100, was capable of binding folic acid as well as methotrexate, had an apparent Mr of 160,000 by gel filtration in the presence of Triton X-100, and was precipitated by antiserum to human placental folate receptor. This membrane-associated protein may play an important role in the uptake and metabolism of methotrexate under physiologic conditions.  相似文献   

19.
The substrate specificity of dihydrofolate reductase from cells of different origin has been thought to be quite narrow, and unconjugated dihydropterins such as 6-methyl-dihydropterin are known to be very poor substrates. We have reinvestigated the substrate specificity of several dihydropterins and, in addition, have observed that in a new series of unconjugated dihydropterins of the general structure 6-CH2O(CH2)nCH3 several compounds are excellent substrates for the bovine liver enzyme, but none of them bind as well as dihydrofolate. The substrate activity (apparent Vmax) of these compounds increases from 17 to 110% that of the natural substrate, dihydrofolate, as n is increased from 0 to 3. In contrast, these unconjugated dihydropterins are very poor substrates for the Escherichia coli enzyme.  相似文献   

20.
ABSTRACT. The effects of different sulphonamides, dihydrofolate reductase inhibitors and other inhibitors of folate metabolism on growth of Acanthamoeba culbertsoni in a chemically defined medium are reported. Among the sulphonamides, sulphamethoxazole and sulphadiazine were most effective followed by sulphanilamide and sulphaguanidine. Inhibition by each sulphonamide was reversed by p-aminobenzoic acid as well as folic acid. 7-Methylguanosine, a pteridine synthesis-inhibitor, did not inhibit multiplication of A. culbertsoni. Among the dihydrofolate reductase inhibitors, pyrimethamine blocked the amoebic growth at 100 μg/ml, while trimethoprim and cycloguanil palmoate failed to cause significant inhibition of growth even at 250 μg/ml. Metoprine inhibited amoebic growth completely at 50 μg/ml. Methotrexate and a thymidylate synthetase inhibitor 5-fluorouracil inhibited growth strongly, with IC50 values (the concentration of the drug which causes 50% inhibition of the growth at 72 h) of 1.97 and 2.45 μg/ml, respectively. Inhibition by methotrexate, metoprine or 5-fluorouracil could not be reversed by folic acid, folinic acid, thymidine, or folinic acid plus thymidine. the results indicate unusual features in A. culbertsoni folate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号