首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of both (-)- and (+)-nicotine isomers were examined on in vitro uptake and release of [3H]dopamine in rat striatum. Both isomers inhibited uptake of [3H]dopamine in chopped tissue at concentrations well below those necessary for promoting release of preloaded [3H]dopamine. (-)-Nicotine was more potent than (+)-nicotine both at inhibiting uptake and at promoting release. Unlike other dopamine uptake inhibitors, however, nicotine inhibited only 50% of the total uptake. In the presence of 1 nM nicotine, the residual [3H]dopamine uptake was less sensitive to inhibition by cocaine than uptake in the absence of nicotine. Nicotine did not compete against the binding of [3H]GBR 12935, a selective dopamine uptake inhibitor. The nicotinic receptor agonists carbachol and 1,1-dimethyl-4-phenylpiperazinium iodide also inhibited uptake, whereas the nicotinic antagonists chlorisondamine and mecamylamine blocked nicotine's effect. Thus, the effect of nicotine on dopamine uptake appears to be mediated by a receptor similar to the nicotinic acetylcholine receptor. These receptors do not seem to be on the terminals that are accumulating dopamine, however, since tetrodotoxin prevented the effect of nicotine on [3H]dopamine uptake and nicotine had no effect on uptake in a synaptosomal preparation.  相似文献   

2.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

3.
Neosurugatoxin, a neurotoxin isolated from the Japanese ivory mollusc (Babylonia japonica) is a nicotinic antagonist with a specificity towards ganglionic nicotinic receptors. At low concentration (5 × 10?8 M) neosurugatoxin inhibited the release of [3H]dopamine evoked by 1,1-dimethyl-4-phenylpiperazinium (DMPP) from rat striatal nerve terminals, without affecting the response to K+-depolarisation. In contrast, αbungarotoxin did not antagonise the action of DMPP. Neosurugatoxin also inhibited [3H] nicotine binding to rat brain membranes but had no effect on [125I]αbungarotoxin binding to the same tissue preparation. These results support the view that functional nicotinic receptors in the CNS resemble ganglionic nicotinic receptors. Neosurugatoxin has considerable potential as a useful probe for such receptors in the brain.  相似文献   

4.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

5.
Antibodies against peripheral nicotinic acetylcholine receptors (nAChR) were used to determine the proportion of brain α-bungarotoxin binding sites that are immunologically related to the peripheral nAChR. The α-bungarotoxin binding component partially purified from rat brain was labelled with [125I]α-bungarotoxin and reacted with increasing concentrations of rabbit anti(nAChR) antisera. At least 75% of the brain protein could be immunoprecipitated by rabbit anti(rat muscle junctional nAChR) antiserum (M) whereas an antiserum against Torpedo nAChR (J) was without effect and clearly failed to cross-react with the brain component. Both antisera precipitated 100% of [125I]α-bungarotoxin-labelled nAChR from Torpedo marmorata. The lower precipitation of the brain protein was not a consequence of [125I]α-bungarotoxin dissociating during the precipitation. We conclude that the majority of α-bungarotoxin binding sites in brain are clearly recognised by the crossreacting antiserum.Release of [3H]dopamine from striatal synaptosomes could be elicited by nicotine in a dose-dependent manner and the response was prevented by the ganglionic blocker mecamylamine, although antagonism by α-bungarotoxin was less clearcut. Preincubation of the synaptosomes with antiserum M resulted in a statistically significant decrease in the [3H]dopamine response to nicotine at all agonist concentrations tested. Antiserum J, however, had no consistent effect on the response. Thus the actions of the antisera parallel their ability to recognise the brain α-bungarotoxin binding component. We conclude that the cholinergic regulation of dopamine release is in part mediated through a nAChR that is immunologically related to the nAChR of the neuromuscular junction and to the α-bungarotoxin binding component that can be isolated from rat brain.  相似文献   

6.
A human neuroblastoma cell line, IMR32, has been characterized as far as morphology, membrane receptors for neurotransmitters, and uptake and release of [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine). These cells expressed at their surface both nicotinic and muscarinic cholinergic receptors, revealed by [125I]alpha-bungarotoxin and [3H]quinuclidinylbenzilate ([3H]QNB) binding, respectively. [125I]alpha-Bungarotoxin binding was efficiently inhibited by alpha-bungarotoxin, nicotine, carbachol, and d-tubocurarine. [3H]QNB binding was competitively inhibited by atropine, pirenzepine, and carbachol. Hexamethonium did not affect the binding of either ligand. In competition experiments with [3H]QNB, pirenzepine recognized only one binding site with "low affinity," and carbachol recognized two sites with different affinities. beta-adrenergic receptors were present in a very low amount, whereas alpha-adrenergic and dopaminergic receptors were not detectable. IMR32 cells had an imipramine-sensitive [3H]dopamine uptake, but carbachol, high levels of K+, the calcium ionophore A23187, and alpha-latrotoxin were not able to induce release of [3H]dopamine that had been taken up. The ultrastructural analysis showed that IMR32 cells contained very few dense-core vesicles, suggesting a low storage capacity for neurotransmitter. These cells could be an useful in vitro model for studying neurotransmitter receptors of the human CNS.  相似文献   

7.
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography.  相似文献   

8.
Abstract : The influence of β‐amyloid on cholinergic neurotransmission was studied by measuring alterations in nicotinic acetylcholine receptors (nAChRs) in autopsy brain tissue from subjects carrying the Swedish amyloid precursor protein (APP) 670/671 mutation. Significant reductions in numbers of nAChRs were observed in various cortical regions of the Swedish 670/671 APP mutation family subjects (‐73 to ‐87%) as well as in sporadic Alzheimer's disease (AD) cases (‐37 to ‐57%) using the nicotinic agonists [3H]epibatidine and [3H]nicotine, which bind with high affinity to both α3 and α4 and to α4 nAChR subtypes, respectively. Saturation binding studies with [3epibatidine revealed two binding sites in the parietal cortex of AD subjects and controls. A significant decrease in Bmax (‐82%) for the high‐affinity site was observed in APP 670/671 subjects with no change in KD compared with controls (0.018 nM APP 670/671 ; 0.036 nM control). The highest load of neuronal plaques (NPs) was observed in the parietal cortex of APP 670/671 brains, whereas the number of [3H]nicotine binding sites was less impaired compared with other cortical brain regions. Except for a positive significant correlation between the number of [3H]nicotine binding sites and number of NPs in the parietal cortex, no strict correlation was observed between nAChR deficits and the presence of NPs and neurofibrillary tangles, suggesting that these different processes may be closely related but not strictly dependent on each other.  相似文献   

9.
The in vivo regulation of [3H]acetylcholine [( 3H]ACh) recognition sites on nicotinic receptors in rat brain was examined by administering drugs that increase stimulation of nicotinic cholinergic receptors, either directly or indirectly. After 10 days of treatment with the cholinesterase inhibitor diisopropyl fluorophosphate, [3H]ACh binding in the cortex, thalamus, striatum, and hypothalamus was decreased. Scatchard analyses indicated that the decrease in binding in the cortex was due to a reduction in the apparent density of [3H]ACh recognition sites. In contrast, after repeated administration of nicotine (5-21 days), the number of [3H]ACh recognition sites was increased in the cortex, thalamus, striatum, and hypothalamus. Similar effects were observed in the cortex and thalamus following repeated administration of the nicotinic agonist cytisin. The nicotinic antagonists mecamylamine and dihydro-beta-erythroidine did not alter [3H]ACh binding following 10-14 days of administration. Further, concurrent treatment with these antagonists and nicotine did not prevent the nicotine-induced increase in these binding sites. The data indicate that [3H]ACh recognition sites on nicotinic receptors are subject to up- and down-regulation, and that repeated administration of nicotine results in a signal for up-regulation, probably through protracted desensitization at the recognition site.  相似文献   

10.
Using concentrations of [3H] dihydroergokryptine between 0.1 and 5 nM, saturable binding can be demonstrated in rat cerebral cortical membranes with a dissociation constant (KD) of about 0.8 nM. α-Noradrenergic agonists and antagonists compete for the sites labeled by these low concentrations of [3H] dihydroergokryptine with relative potencies characteristics of classical α-noradrenergic receptors. The very low potency of serotonin in competing for these binding sites indicates that, in contrast to findings with higher concentrations of [3H] DHE, low concentrations do not label serotonin receptors. Moreover, the low potency of dopamine in competing for [3H] dihydroergokryptine binding in both striatal and cortical membranes indicates that no detectable portion of binding is associated with postsynaptic dopamine receptors.  相似文献   

11.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

12.
Solubilization and Characterization of Striatal Dopamine Receptors   总被引:5,自引:5,他引:0  
Abstract: Dopamine receptor binding proteins were sol-ubilized with the detergent 3–(3–cholamidopropyl) dimethylammonio - 2 - hydroxy - 1– propanesulfonate (CHAPSO) from bovine and rat striatal membranes. The binding of the dopamine antagonist [3H]spiroperidol ([3H]Spi) to the solubilized dopamine receptors was determined by the polyethyleneglycol method. The CHAPSO-solubilized dopamine receptor binding proteins remain in the supernatant fraction following centrifuga-tion at 100,000 ×g for 2 h. The CHAPSO-solubilized dopamine receptor proteins, as well as the prelabeled [3H]Spi-receptor protein complex, bind specifically to wheat germ agglutinin (WGA)-agarose columns, which is consistent with an identification as glycoproteins. HPLC analysis of the CHAPSO-solubilized, prelabeled [3H]Spi-receptor protein complex (CHAPSO preparation) reveals association with a high molecular weight form, indicating the formation of aggregates and/or micelles. Treatment of the WGA-agarose-bound [3H]Spi-receptor protein complex with digitonin (CHAPSO-digitonin preparation) results in dissociation of the high molecular weight form into lower molecular weight forms. The HPLC profile of the prelabeled [3H]Spi-receptor complex in the CHAPSO-digitonin preparation reveals two radioactive peaks. The major peak had a retention time of 16 min, corresponding to an apparent MW of 175,000, whereas the minor peak had a retention time of 21 min, corresponding to an apparent MW of 49,000. The CHAPSO-solubilized dopamine receptor binding proteins are sensitive to modulation by GTP, indicating that the association with the GTP binding component is preserved in the “soluble” state. The potencies of dopamine antagonists and agonists for inhibiting the binding of [3H]Spi to CHAPSO-solubilized dopamine receptor proteins are similar to those for membrane-bound proteins. Chronic treatment with haloperidol increases the Bmax, and does not change the KD for [3H]Spi in the CHAPSO-solubilized and in the membrane-bound preparations. Thus, the CHAPSO-solubilized dopamine receptor proteins retain the binding characteristics of the supersensitive membrane-bound dopamine receptors.  相似文献   

13.
The effect of ibogaine (Endabuse, NIH 10567) on serotonin uptake and release, and on serotonergic modulation of dopamine release, was measured in striatal tissue from rats and mice. Two hours after treatment in vivo with ibogaine (40 mg/kg i.p.), the uptake of labeled [3H]serotonin and [3H]dopamine uptake in striatal tissue was similar in the ibogaine-treated animal to that in the control. The 5HT1B agonist CGS-12066A (10–5 M) had no effect on stimulation-evoked tritium release from mouse or rat striatal tissue preloaded with [3H]serotonin; however, it elevated tritium efflux from striatal tissue preloaded with [3H]dopamine. This increase was not seen in mice treated with ibogaine 2 or 18 hours previously, or in rats treated 2 hours before. Dopamine autoreceptor responses were not affected by ibogaine pretreatment in either mouse or rat striatal tissue; sulpiride increased stimulation-evoked release of tritium from tissue preloaded with [3H]dopamine. The long-lasting effect of ibogaine on serotonergic functioning, in particular, its blocking of the 5HT1B agonist-mediated increase in dopamine efflux, may have significance in the mediation of its anti-addictive properties.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

14.
Regulation of Brain Nicotinic Receptors by Chronic Agonist Infusion   总被引:8,自引:2,他引:6  
Several studies have demonstrated that chronic treatment with nicotine elicits an increase in the number of brain nicotinic receptors. To determine whether this effect is elicited by other nicotinic agonists found in tobacco, the effects of chronic infusion with nicotine on brain nicotinic receptors were compared with those after anabasine and lobeline. C57BL/6 mice were infused with saline or equimolar doses (18.5 mumol/kg/h) of nicotine, anabasine, or lobeline for 8 days. Nicotinic receptors, quantified by the binding of [3H]nicotine and [125I]iodo-alpha-bungarotoxin (alpha-[125I]BTX), and muscarinic receptors, quantified by the binding of [3H]quinuclidinyl benzilate ([3H]QNB), were then assayed in eight brain regions. An increase in [3H]nicotine binding was observed in all regions except cerebellum following chronic infusion with nicotine and anabasine, whereas lobeline did not alter the number or affinity of these binding sites. This increase was due to changes in Bmax and not in the affinity of the receptor for the ligand (KD). A slight increase in alpha-[125I]BTX binding was observed in cortex following chronic anabasine infusion. [3H]QNB binding sites were largely unaltered following chronic infusion with any of the nicotinic analogs. The levels of the agonists in the brain were also determined after chronic treatment, and the amounts of lobeline and anabasine were found to be higher than that of nicotine. Thus, the failure of lobeline to elicit changes in nicotine binding is not due to reduced brain concentrations.  相似文献   

15.
Specific and reproducible changes involving the cholinergic and dopaminergic systems have been described in both the aging rodent and the human nervous system. Nevertheless, relatively little information is available on changes in nicotinic cholinergic receptors occurring in normal aging, and there have been few attempts to correlate alterations in receptor densities with changes in nicotinic actions. We have utilized the nicotine-mediated stimulation of endogenous dopamine efflux in a striatal slice preparation as a functional index of responsiveness to nicotine in aging. Following incubation with nicotine, this efflux was significantly lower in 25-month-old (aged) as opposed to 4-month-old (young) rats. In contrast, the release of striatal dopamine following a high-potassium stimulus was similar at both ages. Binding studies in young and aged animals did not reveal any significant change with age in the total number of striatal nicotinic receptors recognized by either [3H]nicotine or the neuronal nicotinic antagonist 125l-neuronal bungarotoxin. However, there was a nearly 80% decline in the subpopulation of striatal nicotinic receptors jointly recognized by both nicotine and neuronal bungarotoxin, but not by α-bungarotoxin. Quantitative autoradiography demonstrated declines with age in this receptor subtype in several brain regions examined. Decrements in this specific subpopulation of nicotinic receptors or in the nerve cells expressing these receptors may contribute to the functional declines that take place in the aging motor and visual systems.  相似文献   

16.
Abstract

Acute treatment of rats with the antidepressant bupropion increased [3H]spiperone binding to D2 receptors in vivo. This dose- and time-dependent effect was greatest in striatum and minimal in cerebellum and pituitary. A parallel behavioral stimulation occurred in the same rats. Among 21 antidepressants and CNS stimulants tested, only those that activate dopamine (DA) transmission had similar effects: nomifensine, amineptine, methylphenidate, D-amphetamine, amfonelic acid, cocaine, benztropine and GBR 12909. Decreasing DA transmission with reserpine plus α-methyl-p-tyrosine prevented the action of bupropion. Finally, bupropion was inactive in vitro and ex-vivo. Therefore, we propose that bupropion and other DA-enhancing agents modify the characteristics of [3H]spiperone binding through the intervention of a dynamic regulation of the D2 receptors by the neurotransmitter itself.  相似文献   

17.
Abstract: It has been shown previously that typical neuroleptics have higher affinities for 3,4-dihydroxyphenyl-ethylamine (dopamine) Dl receptors as labeled by(R)- (+)- 8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1 -N-3-benzazepine-7-ol ([3H]SCH 23390) than for inhibiting dopamine-stimulated adenylate cyclase. We now report that the atypical neuroleptics, clozapine and fluperlapine, exhibit characteristics opposite to typical neuroleptics, i.e., they have higher affinity for inhibiting dopamine-stimulated adenylate cyclase than [3H]SCH 23390 binding. A variety of compounds, i.e., clozapine, fluperlapine, and dopamine, were tested for their capacity to affect the rate constants of [3H]SCH 23390 binding; these experiments revealed no effect of any tested compound on on-rate or off-rate of [3H]SCH 23390 binding. Treatment of striatal membranes with phospholipase A2 (PLA2) caused a rapid decrease in the Bmax value of the [3H]SCH 23390 binding with no effect on the Kd value. The adenylate cyclase, both the unstimulated, the dopamine-, fluoride-, and forskolin-stimulated activity, was far less sensitive than [3H]SCH 23390 binding to PLA2. Treatment of striatal membranes with filipine and (NH4SO4 produced, as did PLA2 treatment, a rapid decline in [3H]SCH 23390 binding. However, opposite to PLA2 treatment, these agents stimulated the adenylate cyclase. In conclusion, a comparison of the pharmacological characteristics of [3H]SCH 23390 binding and dopamine-stimulated adenylate cyclase suggests the existence of two different Dl binding sites. The rate experiments exclude the possibility of allosterically coupled sites. Instead our results favor that the Dl receptor exists in different states/conformations, i.e., both adenylate cyclase-coupled and uncoupled, and further, that the atypical neuroleptics clozapine and fluperlapine may have adenylate cyclase-coupled dopamine Dl receptors as target.  相似文献   

18.
Abstract We used the cytotoxic properties of methylazoxymethanol acetate (MAM), which ablates mitotically active neuroblasts, to eliminate neurons in the fetal striatum to define the factors that regulate the development of the synaptic circuitry of this region. Adult rats whose mothers received a single intraperitoneal injection of 20 mg/kg of MAM on gestational days (DG) 14-17 were used in this study. MAM treatment at 14 DG caused a 49% decrease in striatal mass whereas treatment at 17 DG reduced the striatal weight by only 16%; MAM treatment on 15 or 16 DG gave intermediate results. Histologic analysis of Nissl-stained sections did not reveal an obvious disruption of striatal organization, although the region was clearly hypoplastic. The hypoplasia was associated with significant increases in the specific activities of choline acetyltransferase and tyrosine hydroxylase, although total activities of these enzymes per striatum were significantly depressed with the 14 or 15 DG treatments. In contrast, the specific activity of glutamate decarboxylase was unaffected by MAM treatment whereas the total activity of this enzyme was reduced commensurate with the degree of striatal hypoplasia. In rats lesioned at 15 DG, there was a similar 30% increase in the specific activities of all presynaptic dopaminergic markers studied. In contrast, the specific activity of the synaptosomal uptake process for [3H]choline was elevated by 60%, the specific activity of choline acetyltransferase was increased by only 30%, and the concentration of acetylcholine in the striatum was unchanged. Whereas the specific activities of glutamate decarboxylase and of the synaptosomal uptake process for [3H]γ-aminobutyric acid ([3H]GABA) were unaffected by the 15 DG MAM treatment, the concentration of GABA was increased significantly by 20%. The specific binding of [3H]spiroperidol, [3H]quinuclidinyl benzilate ([3H]QNB). and [3H] muscimol to, respectively, dopamine, muscarinic, and GABA receptors was unchanged by the 15 DG MAM lesion. The nigral dopaminergic perikarya appeared unaffected by the 15 DG MAM lesion in that the tyrosine hydroxylase activity remained normal. Consistent with the loss of striatal GABAergic perikarya, the specific activities of glutamate decarboxylase and of the synaptosomal uptake process for [3H]GABA were significantly reduced in the substantia nigra; however, the concentration of endogenous GABA was twofold greater than in control in this terminal region. The results of these studies indicate that the nigro-striatal dopaminergic pathway only partially compensates for the loss of neurons in its terminal field within the hypoplastic striatum. Striatal cholinergic and GABAergic neurons differ considerably in their responses to the MAM lesion, suggesting that they are derived from different neuroblast pools. Finally, the altered synaptic relationships induced by the fetal lesion may affect neurotransmitter turnover as evidenced by disparities in GABA and acetylcholine levels when compared with other presynaptic markers for the GABAergic and cholinergic neurons.  相似文献   

19.
[3H]-dopamine ([3H]-DA) uptake was measured in the presence or absence of the catecholamine uptake inhibitor nomifensine in both unfertilized and fertilized eggs. Specific [3H]-DA uptake depended on time and [3H]-DA concentration; it was high in unfertilized eggs, declined 20–30 min after fertilization, and rose again during cleavage. Irreversible inactivation of dopamine receptors by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) resulted in a complete loss of sensitivity of egg adenylate cyclase to dopamine stimulation. In fertilized eggs treated with EEDQ for 1 hr, restoration of adenylate cyclase activity sensitive to dopamine stimulation could be observed 4 hr after the end of treatment, thus suggesting the appearance of new dopamine receptors in cleaving eggs. Short-term EEDQ treatment on unfertilized eggs, although not impairing fertilization, resulted in cleavage inhibition; the same treatment carried out soon after fertilization, on the other hand, elicited no effect on development. On the contrary, in embryos subjected to continuous treatment with EEDQ, development was impaired independent of the stage at which the treatment was started. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The regional distribution and in vivo binding of the dopamine analog 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalen (ADTN) was studied in the brain. The highest density of binding sites was in the striatum, with virtually no binding in the cerebellum. The binding of [3H]ADTN reflects an occupation of specific dopamine sites because the binding was diminished by the simultaneous administration of the dopamine antagonist haloperidol or the dopamine precursorl-3,4-dihydroxyphenylalanine (l-dopa). Chronic administration of haloperidol orl-dopa prior to assaying for in vivo binding resulted in an increase in the number of sites for [3H]ADTN which correlates to the increase observed in in vitro assays following long-term treatment with these agents. The subcellular distribution of in vivo labeled ADTN sites in the caudate nucleus indicate a high density of specific binding sites in the microsomal fraction, P3. Overall, these data demonstrate that the aminotetralins, such as ADTN, which bind with high affinity to the dopamine receptor in the caudate nucleus in vitro and in vivo, can provide precise information on the topography of this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号