首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for separation of albumin-ribonuclease (RNase) conjugates has been proposed, based on the use of macroporous silicates. It was established that about 76% of ligand-free human serum albumin (LFHSA) formed complexes with enzymes. It was shown that most of the conjugates of albumin and pancreatic RNase contained up to 2 mol enzyme per 1 mol LFHSA. The conjugates of albumin and bacterial RNase, isolated from the cells of the strain Bacillus intermedius 7P, displayed higher specific activities, containing, on average, 2.3 mol RNase per 1 mol LFHSA (for the conjugates with molecular weights below 92 kDa) or 3.3 mol RNase per 1 mol protein carrier (for the conjugates with higher molecular weight).  相似文献   

2.
A method for separation of albumin–ribonuclease (RNase) conjugates has been proposed based on the use of macroporous silicates. It was established that about 76% of ligand-free human serum albumin (LFHSA) formed complexes with enzymes. It was shown that most of the conjugates of albumin and pancreatic RNase contained up to 2 mol enzyme per 1 mol LFHSA. The conjugates of albumin and bacterial RNase isolated from cells of the strain Bacillus intermedius 7P displayed higher specific activities, containing, on average, 2.3 mol RNase per 1 mol LFHSA (for the conjugates with molecular weights below 92 kDa) or 3.3 mol RNase per 1 mol protein carrier (for the conjugates with higher molecular weight).  相似文献   

3.
The method for the determination of insulin by means of the enzyme immunoassay, based on the use of insulin-peroxidase conjugates, has been developed. In this assay the scheme of the successive saturation of the active sites of antibodies is used. The antigenic properties of two conjugates differing in the method of their preparation are compared. The conjugates were obtained by the covalent binding of peroxidase, oxidized in its carbohydrate component, with insulin (conjugate 1) or hexamethylene-diamine-modified insulin (conjugate 2). The conjugates represented a mixture of oligomers differing in their molecular weight. Conjugate 1 possessed higher affinity to antibodies and higher enzymatic activity than conjugate 2. The method for evaluating the quality of antisera to insulin used in the assay has been proposed. The time of the insulin assay is 5-16 hours, the limit of insulin detection is 5 microU/ml, the variation factor is 3-12%.  相似文献   

4.
Eudragit S-100, a copolymer of methacrylic acid and methyl methacrylate is soluble at pH above 5 and insoluble at pH below 4.5. pH-dependent solubility of the polymer is used for the development of reversibly soluble biocatalyst, which combines the advantages of both soluble and immobilized biocatalysts. Activity of trypsin, covalently coupled to Eudragit S-100, was improved by protecting the active site of the enzyme with benzamidine and removing the noncovalently bound proteins with Triton X-100 in 0.15 M Tris buffer (pH 7.6). Accurate choice of coupling conditions combined with proper washing protocol produced highly active enzyme-polymer conjugate with no noncovalently bound protein. Two conjugates with 100-fold difference in the content of trypsin coupled to Eudragit S-100 were studied when the preparations were in soluble and precipitated forms. The K(m)values of the soluble enzyme to the lower molecular weight substrate was less than that of the free enzyme, whereas that to the higher molecular weight substrate was closer to that of the free enzyme. Activities of the soluble and precipitated immobilized trypsin with higher molecular weight substrate were completely inhibited by soy bean trypsin inhibitor, whereas complete inhibition with soy bean trypsin inhibitor was never achieved with lower molecular weight substrate, indicating reduced access of high-molecular weight substrate/inhibitor to some of the catalytically active enzyme molecules in trypsin-Eudragit conjugate.  相似文献   

5.
Conjugates of sulfamethoxazole (SMX) with human serum albumin (HSA), transferrin (TR), and poly(L-lysine) (PL, degrees of polymerization 16 and 430) have been prepared. As a model, succinylSMX-glycine methyl ester was synthesized by carbodiimide and active ester routes. The proteins and PL were acylated with succinylSMX succinimido ester, affording conjugates (succinylSMX)2-21-HSA, (succinylSMX)17,27-TR, (succinylSMX)11-Lys16, and (succinylSMX)71-Lys430 in which SMX was linked by a spacer chain of four carbons. This represents substitution of up to 35, 46, 65, and 17% of the amino groups of HSA, TR, PL16, and PL430, respectively. HSA was also acylated with the succinimido esters of succinylSMX-glycine and succinylSMX-epsilon-aminohexanoic acid, affording conjugates (succinylSMX-Gly)53-HSA and (succinylSMX-epsilon-NH2hex)51-HSA. In these conjugates SMX was linked by a spacer chain of 7 and 11 carbons, respectively, and almost all the amino groups of HSA were substituted. Factors apparently influencing the extent of conjugation to HSA were the stability of the active ester and the solubility of the conjugation reaction mixture. A sulfanilic acid (SA) conjugate, containing 12 mol of ligand/mol of HSA, was also prepared. The route of synthesis involved acylation of HSA with sulfanilyl fluoride. N-epsilon-Sulfanilyl-L-lysine dihydrochloride, required for quantitation of bound SA, was synthesized by a new route starting from alpha-Boc-L-lysine. Conjugates (sulfanilyl)12-HSA and (succinylSMX)13-HSA, differing in molecular weight from HSA by only 2.6 and 6.5%, were distinguishable from HSA by gel-filtration HPLC, as were the more highly substituted conjugates from their respective unsubstituted materials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Red blood cell-mediated microinjection was used to introduce radioiodinated ubiquitin into ts85 cells, a mouse cell line that contains a thermolabile ubiquitin-activating enzyme (E1). The proportion of ubiquitin present as histone conjugates, high molecular weight conjugates, and free molecules was then determined by gel electrophoresis and autoradiography. When ts85 cells were incubated at the nonpermissive temperature, 39.5 degrees C, high molecular weight conjugates accumulated. This unexpected result was confirmed by Western blot analyses. To determine whether ubiquitin conjugates formed under nonpermissive conditions or merely persisted after the temperature increase, ts85 cells were incubated at 39.5 degrees C to generate large amounts of conjugates and then shifted to 42 degrees C. The higher temperature resulted in a 25% reduction in conjugates, but upon return to 39.5 degrees C, the ubiquitin conjugates were restored to pre-42 degrees C amounts. Since all changes in ubiquitin conjugate levels occurred above 39.5 degrees C, ts85 cells can couple ubiquitin to cellular proteins even after prolonged culture at nonpermissive temperatures. Western blot analyses showed that less than 10% of the E1 molecules present in ts85 cells at 31 degrees C remained after 2 h at 39.5 degrees C. However, when 125I-ubiquitin was added to extracts from heated ts85 cells an apparent high molecular weight form of E1 and thiol ester adducts between ubiquitin and the E2 carrier proteins were detected by electrophoresis at 4 degrees C. Considering both in vivo and in vitro demonstrations that heated ts85 cells retain the ability to conjugate ubiquitin to endogenous proteins, considerable caution must be exercised in the design and interpretation of proteolysis experiments using this mutant cell line.  相似文献   

7.
The many uses of antibody-protein conjugates, especially antibody-streptavidin conjugates, give rise to the need for a reliable conjugation method offering reasonable yields and reproducible quality. We describe a method for preparing antibody-streptavidin conjugates that has consistently produced conjugates of quality and in sufficient quantity to be used in the clinical development and evaluation of the Pretarget delivery system. In this method antibody disulfides are reduced to generate reactive thiols, and maleimides are linked to streptavidin with the heterobifunctional cross-linking agent, SMCC. The two activated proteins are then mixed briefly before the conjugation is terminated with an oxidizing agent that reforms disulfides from unreacted thiols. The preponderance of the conjugate produced is 1:1 and 1:2 Ab:SA conjugate. This fraction is isolated from unconjugated proteins and high molecular weight byproduct by iminobiotin affinity and ion-exchange chromatography. The resulting conjugate is at least 90% 1:1 + 1:2 Ab:SA conjugate, contains no SA or Ab, and is produced reproducibly in 37% yield.  相似文献   

8.
Addition of des-75-76-ubiquitin (ubiquitin lacking its two C-terminal glycine residues) to reticulocyte lysates leads to the inhibition of proteolysis and the formation of conjugates between it and native ubiquitin, as demonstrated by the incorporation of both 125I-labeled des-75-76-ubiquitin and 125I-labeled ubiquitin into these conjugates. Conjugate formation is blocked by methylation of the amino groups of des-75-76-ubiquitin, consistent with the concept that the conjugates represent attachment of the ubiquitin alpha-carboxyl group to amino groups of des-75-76-ubiquitin. The lack of significant direct competition for conjugate formation by typical ubiquitinatable proteolysis substrates or by des-73-76-ubiquitin, together with differences in conjugate formation between des-73-76-ubiquitin and des-75-76-ubiquitin demonstrated earlier, indicates that the enzyme involved recognizes the ubiquitin sequence as a substrate for ubiquitination. Increasing concentrations of native ubiquitin first increase and then reduce the steady state level of conjugates of the des-75-76-protein, the inhibitory effects of high concentrations consistent with competition by native ubiquitin for conjugate formation. Upon fractionation of reticulocyte lysates, a factor essential to the net synthesis of conjugates of des-75-76-ubiquitin was demonstrated to be present in Fraction I and to behave as a protein of molecular weight 38,000. The role in this system of a factor from Fraction I other than ubiquitin indicates that a novel pathway is involved.  相似文献   

9.
Cysteine conjugate beta-lyase is a name applied to enzymes which cleave the S-cysteine conjugates of some xenobiotics to pyruvate, ammonia, and a thiol. Recently, several laboratories have characterized these enzymes from kidney, liver, and bacterial sources in an effort to understand their role in the genesis of novel sulfur-containing metabolites of xenobiotics and in the toxicity of some S-cysteine conjugates. Kynureninase is an enzyme which plays a key role in the biosynthesis of nicotinamide ribonucleotides. This investigation demonstrates that rat hepatic cysteine conjugate beta-lyase is the same enzyme as kynureninase. Both activities copurify on ion exchange, hydroxylapatite, and molecular exclusion chromatography. The subunit composition of enzyme prepared by two different methods is identical, Mr = 55,000. The Km values for 3-OH-kynurenine and kynurenine are 13 and 400 microM, respectively. Kynurenine and 3-hydroxykynurenine inhibit cysteine conjugate beta-lyase activity. Inactivation of the enzyme by substrates which undergo beta-elimination results in loss of kynureninase activity, but kynurenine does not inactivate the enzyme. Both enzyme activities react with anti-cysteine conjugate beta-lyase antibody. Product inhibitors of kynureninase, anthranilate, and 3-hydroxyanthranilate are also inhibitors of cysteine conjugate beta-lyase. Heat inactivation at 70 degrees C produced coincident loss of both activities. The enzyme has an absorption maximum at 432 nm suggesting a bound pyridoxal phosphate. These data show that at least one cysteine conjugate beta-lyase is a pyridoxal phosphate enzyme with a biological function other than xenobiotic metabolism. The enzyme can catalyze two distinct types of reactions, i.e. beta-elimination and the kynureninase reaction.  相似文献   

10.
To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The immobilization of pullulanase and beta-amylase on soluble polysaccharides (dextrans and amylose) has been carried out. The method used for coupling the enzymes to the carbohydrate support involves limited periodate oxidation of the polysaccharide followed by reductive alkylation with sodium cyanoborohydride or borohydride. The influence of the degree of functionalization of the carbohydrate, the incubation time, the nature of the reducing agent and, for the dextrans studied, their molecular weight, on the properties of the conjugate were studied. We have observed an apparent correlation between the molecular weight of the glycoprotein conjugates formed and their thermal stability, resistance to urea denaturation and their kinetic parameters. By selecting the proper experimental conditions leading to conjugates with maximum thermal stabilities, it has also been shown that beta-amylase conjugates can hydrolyze starch at a temperature 20 degrees C higher than the corresponding value for the native enzyme. This result demonstrates that conjugation may result in modified enzymes leaving a high operational stability at elevated temperatures. We suggest that the immobilization method presented in this article represents an approach to the stabilization of enzymes employed at an industrial level, which may be of general application.  相似文献   

12.
Chlorophyllide a was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) (PEG-NH2) to form a PEG-chlorophyllide conjugate through an acid-amide bond. The conjugate catalyzed the reduction of methylviologen in the presence of 2-mercaptoethanol. It also catalyzed the photoreduction of NADP+ or NAD+ in the presence of ascorbate as an electron donor and ferredoxin-NADP+ reductase as the coupling enzyme. Utilizing the reducing power of NADPH generated by PEG-chlorophyllide conjugate under illumination, glutamate was synthesized from 2-oxoglutarate and NH4+ in the presence of glutamate dehydrogenase. PEG-chlorophyllide conjugate was quite stable toward light illumination compared with chlorophyll a. The increase in the molecular weight of PEG in the PEG-chlorophyllide conjugates was accompanied by the enhancement of photostability of the conjugate and also by the increased solubility in the aqueous solution.  相似文献   

13.
Diphenyl 1-amino-2-phenylethylphosphonate was introduced to poly(ethylene glycol)s (PEGs) with average molecular masses of 300, 400, and 600 to prepare water-insoluble PEG-inhibitor conjugates. Interestingly, only the conjugate from PEG with an average molecular weight of 600 formed a precipitate with chymotrypsin but not with trypsin. The results demonstrated that the PEG-inhibitor conjugate is useful for separation of chymotrypsin.  相似文献   

14.
1. The extent of the excretion in the bile of the rat of benzene and 21 of its simple derivatives was studied. 2. Some 16 compounds of molecular weight less than 200, and including neutral molecules (benzene and toluene), aromatic acids, aromatic amines and phenols, were injected in solution intraperitoneally into biliary-cannulated rats. Metabolites in the bile were identified and estimated. The extent of biliary excretion of these compounds was low, i.e. 0–10% of the dose in 24hr., and most appeared in the bile mainly as conjugates. 3. The biliary excretion of six conjugates of molecular weight less than 300, including three glycine conjugates, one sulphate conjugate, one glucuronic acid conjugate and two acetyl derivatives, was low (less than 3% of the dose). 4. It is concluded that simple benzene derivatives of molecular weight less than about 300 are poorly excreted in rat bile.  相似文献   

15.
In the ubiquitin (Ub) pathway, proteins are ligated with polyUb chains and then are degraded by a 26 S protease complex. We describe an enzyme, called isopeptidase T, that acts on polyUb chains. It is a monomeric Ub-binding protein abundant in erythrocytes and reticulocytes. The activity of the isopeptidase is inhibited by iodoacetamide and Ub aldehyde. Treatment of the enzyme with Ub aldehyde increased its affinity for free Ub, indicating the existence of two different Ub-binding sites and cooperativity between the two sites. Isopeptidase T acts on polyUb-protein conjugates, but not on conjugates in which the formation of polyUb chains was prevented by the use of reductively methylated Ub or on abnormal polyUb chains formed with a mutant Ub that contains a Lys----Arg substitution at residue 48. The enzyme converts high molecular mass polyUb-protein conjugates to lower molecular mass forms with the release of free Ub, but not of free protein substrate. The lower molecular mass Ub-protein conjugate products are resistant to further action of the enzyme. Isopeptidase T stimulates protein degradation in a system reconstituted from purified enzyme components. The enzyme also stimulates the degradation of proteins ligated to polyUb chains by the 26 S protease complex. Preincubation of polyUb-protein conjugates with the isopeptidase did not much increase their susceptibility to proteolysis by the 26 S complex. On the other hand, preincubation of conjugates with the 26 S protease complex and ATP increased the release of free Ub upon further incubation with the isopeptidase. It thus seems that a role of this isopeptidase in protein breakdown is to remove polyUb chain remnants following the degradation of the protein substrate moiety by the 26 S complex.  相似文献   

16.
The present work demonstrates that the relatively low molecular weight synthetic peptide-oligonucleotide conjugates are capable of stable and selective three-component complex formation with complementary 72-100mer DNA oligonucleotides and a cardiac troponin I monoclonal antibody. Neither the Watson-Crick-type interaction between peptide-oligonucleotide conjugate and DNA nor the conjugate-antibody interaction dramatically hampers the other. These interactions remain selective and specific in the presence of several other conjugates not specific to cardiac troponin I monoclonal antibody as well as in the presence of control 100mer DNA oligonucleotides. The data herein demonstrate the feasibility of the synthetic peptide-oligonucleotide conjugates as convenient molecular tools, e.g., for antibody epitope mapping.  相似文献   

17.
A biantennary GM3-saccharide (sialyllactoside) derivative (4) was constructed using allylmalonic acid as a bivalent linker, both carboxylic acids of which were condensed with 3-aminopropyl lactoside (2) prior to enzymatic sialylation with a fusion enzyme. While ozonolysis of its allyl group generated a saccharide having a terminal aldehyde (6), we were unable to couple 6 directly to protein by reductive amination. However, extension of the spacer by means of introducing a maleimide group to 6 through its aldehyde group to give 7 enabled the latter to be successfully coupled to thiolated proteins. The average ratios of saccharide to protein were observed to be 35 in KLH conjugate (13) and 9-12 in HSA conjugates (14 and 15). The antisera obtained by immunizing mice with the biantennary sialyllactoside-KLH conjugate (13) together with MPL adjuvant were analyzed by ELISA. Using several structurally related saccharide-HSA conjugates as screening antigens, it was concluded that anti-sialyllactoside antibodies, both IgG and IgM, were effectively raised. This was further supported by competitive inhibition experiments using lactoside (1), sialyllactoside (8) and biantennary sialyllactoside (4) as inhibitors.  相似文献   

18.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

19.
A method for thermally induced switching of enzyme activity has been developed, based on the site-directed conjugation of end-reactive temperature-responsive polymers to a unique cysteine (Cys) residue positioned near the enzyme active site. The reversible temperature-induced collapse of N,N-dimethylacrylamide (DMA)/N-4-phenylazo-phenylacrylamide (AZAAm) copolymers (DMAAm) has been used as a molecular switch to control the catalytic activity of endoglucanase 12A (EG 12A). The polymer was conjugated to the EG 12A site-directed mutant N55C, directly adjacent to the cellulose binding cleft, and to the S25C mutant, where the conjugation site is more distant. The N55C conjugate displayed a larger activity shutoff efficiency in the collapsed polymer state than the S25C conjugate. Increasing the polymer molecular weight was also shown to increase the shutoff efficiency of the switch. Related to these effects of conjugation site and polymer size, the switching efficiency was found to be strongly dependent on substrate size. With a small substrate, o-nitrophenyl-beta-d-cellobioside (ONPC), there was minimal blocking of enzyme activity when the polymer was in the expanded state. With a large substrate, hydroxyethyl cellulose (HEC), there was a large reduction of enzyme activity in the polymer expanded state, even with relatively small polymer chains, and a further reduction when the polymer was collapsed. Similar general trends for the interactive effects of conjugation site, polymer size, and substrate size were observed for immobilized conjugates. Kinetic studies demonstrated that the switching activity was due to the blocking of substrate association by the collapsed polymers. These investigations provide mechanistic insight that can be utilized to design molecular switches for a variety of stimuli-responsive polymer-protein conjugates.  相似文献   

20.
Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号