共查询到9条相似文献,搜索用时 0 毫秒
1.
Soltész A Tímár I Vashegyi I Tóth B Kellos T Szalai G Vágújfalvi A Kocsy G Galiba G 《Plant biology (Stuttgart, Germany)》2011,13(5):757-766
Cold acclimation is necessary for winter wheat (Triticum aestivum L.) to achieve its genetically determined maximum freezing tolerance, and cold also fulfils the vernalisation requirement. Chromosome 5A is a major regulator of these traits. The aim of the present study was to discover whether changes in the half‐cell redox potential of the glutathione/glutathione disulphide (GSH/GSSG) and ascorbate/dehydroascorbate (AA/DHA) couples induced by cold acclimation are related to freezing tolerance and vernalisation requirement in a specific genetic system including chromosome 5A substitution lines. The amounts of H2O2 and AA, and the AA/DHA ratio showed a rapid and transient increase in the crown of all genotypes during the first week of acclimation, followed by a gradual increase during the subsequent 2 weeks. The amount of GSH and its ratio compared to GSSG quickly decreased during the first day, while later these parameters showed a continuous slow increase. The H2O2, AA and GSH concentrations, AA/DHA and GSH/GSSG ratios and the half‐cell reduction potential of the GSH/GSSG couple were correlated with the level of freezing tolerance after 22 days at 2 °C; hence these parameters may have an important role in the acclimation process. In contrast to H2O2 and the non‐enzymatic antioxidants, the lipid peroxide concentration and activity of the four antioxidant enzymes exhibited a transient increase during the first week, with no significant difference between genotypes. None of the parameters studied showed any relationship with the vegetative/generative transition state monitored as apex morphology and vernalisation gene expression. 相似文献
2.
Synthesis of soluble heat shock proteins in seminal root tissues of some cultivated and wild wheat genotypes 总被引:1,自引:0,他引:1
Effect of heat stress on the synthesis of soluble heat shock proteins (HSPs) and the regrowth in seminal roots of three cultivated and three wild wheat genotypes was examined. In regrowth experiments, 2-d-old etiolated seedlings were exposed to 23 (control), 32, 35, 37 and 38 degrees C for 24 h, and 35 and 37 degrees C (24 h) followed by 50 degrees C (1 h). The lengths of the seminal roots generally decreased significantly at the end of 48 and 72 h recovery growth periods at 35, 37 and 38 degrees C temperature treatments compared with control. Genotypic variability was significant level at all temperature treatments for the seminal root length. Also, genotypic differences for the number of seminal roots were determined among the wheat cultivars and between the wild wheat species and the wheat cultivars at all temperature treatments; but genotypic differences among wild wheat species were only detected at 37-->50 degrees C treatment. Acquired thermotolerance for the seminal root length is over 50% at 37-->50 degrees C treatment. The genotypic variability of soluble heat shock proteins in seminal root tissues were analyzed by two-dimensional electrophoresis (2-DE). Total number of low molecular weight (LMW) HSPs was more than intermediate-(IMW) and high- (HMW) HSPs at high temperature treatments. The most of LMW HSPs which were generally of acidic character ranged between 14.2-30.7 kDa. The genotypes had both common (43 HSP spots between at least two genotypes and 23 HSP spots between 37 and 37-->50 degrees C) and genotype-specific (72 HSP spots) LMW HSPs. 相似文献
3.
Magnetic resonance imaging (MRI) of water during cold acclimation and freezing in winter wheat 总被引:2,自引:2,他引:2
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to analyse changes in the physical state of water in wheat crowns during cold acclimation and during the freezing/thawing cycle. Spectroscopically measured average spin-spin relaxation times (T2) decreased during cold acclimation and increased when plants were grown at normal temperature. Spin-spin relaxation images whose contrast is proportional to T2, times were calculated allowing association of water relaxation with regions of tissue in spin-echo images during acclimation and freezing. Images taken during freezing revealed nonuniform freezing of tissue in crowns and roots. Acclimated and non-acclimated wheat crowns were imaged during freezing and after thawing. Spin-echo image signal intensity and T2 times decreased dramatically between -4°C and -8°C as a result of a decrease in water mobility during freezing. Images collected during thawing were diffuse with less structure and relaxation times were longer, consistent with water redistribution in tissue after membrane damage. 相似文献
4.
WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat 总被引:1,自引:0,他引:1
Vítámvás P Saalbach G Prásil IT Capková V Opatrná J Ahmed J 《Journal of plant physiology》2007,164(9):1197-1207
The amount of proteins soluble upon boiling (especially WCS120 proteins) and the ability to develop frost tolerance (FT) after cold acclimation was studied in two frost-tolerant winter wheat cultivars, Mironovskaya 808 and Bezostaya 1. Protein gel blot analysis, mass spectrometry (MS) and image analysis of two-dimensional gel electrophoresis (2-DE) gels were used to identify and/or quantify the differences in protein patterns before (non-acclimated, NA) and after 3 weeks of cold acclimation (CA) of the wheats, when FT increased from -4 degrees C (lethal temperature (LT(50)), for both cultivars) to -18.6 degrees C in Bezostaya 1 and -20.8 degrees C in Mironovskaya 808. Only WCS120 protein was visible in NA leaves while all five WCS120 proteins were induced in the CA leaves. Mironovskaya 808 had higher accumulation of three members of WCS120 proteins (WCS120, WCS66 and WCS40) than Bezostaya 1. MS analysis of total sample of proteins soluble upon boiling showed seven COR proteins in the CA samples and only three COR proteins in the NA samples of cultivar Mironovskaya 808 (MIR). In conclusion, the level of the accumulation of WCS120, WCS66 and WCS40 distinguished our two frost-tolerant winter wheat cultivars. Moreover, the differences of CA and NA samples of the MIR were shown by liquid chromatography (LC)-tandem mass spectrometry (MS/MS). 相似文献
5.
Six-month-old oleander (Nerium oleander L.) pot plants, derived from vegetative propagation by cuttings, were tested for their ability to cold hardening. Damage of the non-acclimated (NA) plants was visible when treated by low freezing temperatures (below -2 degrees C). The responses of total proteins, leucine aminopeptidase (LAP), esterase (EST) and acid phosphatase (ACP) isoforms of NA and cold-acclimated (CA; 4 degrees C for 14 days) plants were compared using polyacrylamide gel electrophoresis. These molecular markers were also compared in NA and CA plants which received for 2h temperatures of 0, -2, -4, -6 and -8 degrees C. A new 38-kDa polypeptide appeared from day 7 to 14 during the acclimation treatment in the bark extracts and on day 14 in the leaf extracts. The above-mentioned polypeptide band (38 kDa) strongly appeared in all freezing treatments (0, -2, -4, -6 and -8 degrees C) in both bark and leaf extracts of the CA plants. Alterations in the number and the intensity of LAP and EST isoforms as well as in the intensity of ACP isoforms were observed in both bark and leaf of the CA oleander plants. A newly expressed EST isoform is proposed as biochemical marker for the cold acclimation treatment. CO2 assimilation rates (A) as well as transpiration rates (E) in NA plants were positive in 0 degrees C and negative in all temperatures below zero in the freezing treatments. In contrast, CO2 assimilation rates (A) and transpiration rates (E) were positive in CA plants in all temperatures of freezing treatment. A significant decrease (P<0.05) in chlorophyll (Chl) a, Chl a+b concentration and Chl a/b ratio were noticed in oleander plants during the acclimation treatment (from day 0 to 14), while Chl b concentration was unchanged at the respective time. On the other hand, no significant (P<0.05) differences were observed in the freezing treatments. 相似文献
6.
7.
8.
In many woody plants a short photoperiod triggers the onset of cold acclimation, but the nature of this process has remained obscure. We aimed to establish which physiological and genetic factors have a role in short-day-induced acclimation by comparing two types of birch, Betula pubescens Ehrh. and B. pubescens f. hibernifolia Ulv., the latter being unable to increase its abscisic acid (ABA) levels. In the wild type, short-day or natural autumn conditions in the field appeared to elevate the ABA levels before acclimation, which was accompanied by tissue desiccation, osmotic adjustments and accumulation of Group 2 LEA proteins [responsive to ABA (RAB) 16-like; 24, 30 and 33 kDa] and Group 4 LEA proteins [late embryogenesis abundant (LEA) 14-like; 19 kDa]. Under similar conditions the ABA-deficient birch showed reduced water loss, defective osmoregulation, absence of inducible Group 2 LEA proteins, and delayed or reduced tolerance to freezing. In contrast, both birch genotypes showed similar seasonal production patterns of Group 4 LEA proteins. Our results demonstrate that onset of cold acclimation in birch is based on multiple mechanisms, including molecular pathways that are typical of stress responses. ABA may be important for the accurate timing of cold acclimation in trees that are sensitive to photoperiod. 相似文献